

 [image: Documentation Status]
 [https://indra-db.readthedocs.io/en/latest/?badge=latest]
INDRA DB

The INDRA (Integrated Network and Dynamical Reasoning Assembler) Database is a
framework for creating, maintaining, and accessing a database of content,
readings, and statements. This implementation is currently designed to work
primarily with Amazon Web Services RDS running Postrgres 9+. Used as a backend
to INDRA, the INDRA Database provides a systematic way of scaling the knowledge
acquired from other databases, reading, and manual input, and puts that
knowledge at your fingertips through a direct Python client and a REST api.

Knowledge sources

The INDRA Database currently integrates and distills knowledge from several
different sources, both biology-focused natural language processing systems and
other pre-existing databases

Daily Readers

We have read all available content, and every day we run the following readers:

	REACH [https://github.com/clulab/reach]

	Sparser [https://github.com/ddmcdonald/sparser]

we read all new content with the following readers:

	Eidos [https://github.com/clulab/eidos]

	ISI [https://github.com/sgarg87/big_mech_isi_gg]

	MTI [https://ii.nlm.nih.gov/MTI/index.shtml] - used specifically to tag
content with topic terms.

we read a limited subset of new content with the following readers:

	TRIPS [http://trips.ihmc.us/parser/cgi/drum]

on the latest content drawn from:

	PubMed [https://www.ncbi.nlm.nih.gov/pubmed/] - ~19 million abstracts and ~29 million titles

	PubMed Central - ~2.7 million fulltext

	Elsevier [https://www.elsevier.com/] - ~0.7 million fulltext
(requires special access)

Other Readers

We also include more or less static content extracted from the following readers:

	RLIMS-P [https://research.bioinformatics.udel.edu/rlimsp/]

Other Databases

We include the information from these pre-existing databases:

	Pathway Commons database [http://pathwaycommons.org/]

	BEL Large Corpus [https://github.com/OpenBEL/]

	SIGNOR [https://signor.uniroma2.it/]

	BioGRID [https://thebiogrid.org/]

	TAS [https://www.biorxiv.org/content/10.1101/358978v1]

	TRRUST [https://omictools.com/trrust-tool]

	PhosphoSitePlus [https://www.phosphosite.org/]

	Causal Biological Networks Database [http://www.causalbionet.com/]

	VirHostNet [http://virhostnet.prabi.fr/]

	CTD [http://ctdbase.org/]

	Phospho.ELM [http://phospho.elm.eu.org/]

	DrugBank [https://www.drugbank.ca/]

	CONIB [https://pharmacome.github.io/conib/]

	CRoG [https://github.com/chemical-roles/chemical-roles]

	DGI [https://www.dgidb.org/]

These databases are retrieved primarily using the tools in indra.sources. The
statements extracted from all of these sources are stored and updated in the
database.

Knowledge Assembly

The INDRA Database uses the powerful internal assembly tools available in INDRA
but implemented for large-scale incremental assembly. The resulting corpus of
cleaned and de-duplicated statements, each with fully maintained provenance, is
the primary product of the database.

For more details on the internal assembly process of INDRA, see the
INDRA documentation [http://indra.readthedocs.io/en/latest/modules/preassembler].

Access

The content in the database can be accessed by those that created it using the
indra_db.client submodule. This repo also implements a REST API which can be
used by those without direct acccess to the database. For access to our REST
API, please contact the authors.

The INDRA database only works for Python 3.6+, though some parts are still compatible with 3.5.

First, install INDRA [http://indra.readthedocs.io/en/latest/installation.html],
then simply clone this repo, and make sure that it is visible in your
PYTHONPATH.

The development of INDRA DB is funded under the DARPA Communicating with Computers program (ARO grant W911NF-15-1-0544).

Further INDRA Database documentation

	License and funding

	INDRA Database modules
	The Client
	The Principal Database Client

	The Readonly Client

	Miscellaneous Client APIs (Mostly Deprecated)

	Pipeline Management CLI
	indra-db

	Pipeline CLI Implementations
	Content (indra_db.cli.content)

	Reading (indra_db.cli.reading)

	PreAssembly (indra_db.cli.preassembly)

	Knowledge Bases (indra_db.cli.knowledgebase)

	Static Dumps (indra_db.cli.dump)

	Database Integrated Reading Tools
	The Database Readers (indra_db.reading.read_db)

	The Database Script for Running on AWS (indra_db.reading.read_db_aws)

	A Class to Manage and Monitor AWS Batch Jobs (indra_db.reading.submitter)

	Database Integrated Preassembly Tools
	Database Preassembly (indra_db.preassembly.preassemble_db)

	A Class to Manage and Monitor AWS Batch Jobs (indra_db.preassembly.submitter)

	Database Schemas
	Principal Database Schema (indra_db.schemas.principal_schema)

	Readonly Database Schema (indra_db.schemas.readonly_schema)

	Class Mix-ins (indra_db.schemas.mixins)

	Indexes (indra_db.schemas.indexes)

	Utilities
	Database Session Constructors (indra_db.util.constructors)

	Scripts to Get Content (indra_db.util.content_scripts)

	Distilling Raw Statements (indra_db.util.distill_statements)

	Script to Create a SIF Dump (indra_db.util.dump_sif)

	General Helper Functions (indra_db.util.helpers)

	Routines for Inserting Statements and Content (indra_db.util.insert)

	Some Miscellaneous Modules
	Low Level Database Interface (indra_db.databases)

	Belief Calculator (indra_db.belief)

INDRA Database REST Service

	INDRA Database REST API
	The Statement Endpoints
	The output formats

	Get Statements by agents (and type): GET api.host/statements/from_agents

	Get a Statement by hash: GET api.host/statements/from_hash/<hash>

	Get Statements from many hashes: POST api.host/statements/from_hashes

	Get Statements from paper ids: POST api.host/statements/from_papers

	Curation
	Curate statements: POST api.host/curation/submit/<hash>

	Usage examples

Indices and tables

	Index

	Search Page

License and funding

Copyright (C) 2018, Indra Labs

This code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You may find a copy of the GNU General Public License
`here<https://www.gnu.org/licenses/>`_.

The INDRA was developed with funding from ARO grant W911NF-14-1-0397,
“Programmatic modelling for reasoning across complex mechanisms” under
the DARPA Big Mechanism program, and the INDRA database was developed
as an extention of that core project. Work has continued under
W911NF-14-1-0391, “Active context” under the DARPA Communicating with
Computers program, and the DARPA Automated Scientific Discovery Framework
project.

INDRA Database modules

	The Client
	The Principal Database Client
	Access Readings and Text Content (indra_db.client.principal.content)

	Submit and Retrieve Curations (indra_db.client.principal.curation)

	Get Raw Statements (indra_db.client.principal.raw_statements)

	The Readonly Client
	Construct composable queries (indra_db.client.readonly.query)

	Miscellaneous Client APIs (Mostly Deprecated)
	Get Datasets (indra_db.client.datasets)

	Get Statements (indra_db.client.statements)

	Pipeline Management CLI
	indra-db
	content

	dump

	kb

	pa

	pipeline-stats

	reading

	xdd

	Pipeline CLI Implementations
	Content (indra_db.cli.content)

	Reading (indra_db.cli.reading)

	PreAssembly (indra_db.cli.preassembly)

	Knowledge Bases (indra_db.cli.knowledgebase)

	Static Dumps (indra_db.cli.dump)

	Database Integrated Reading Tools
	The Database Readers (indra_db.reading.read_db)

	The Database Script for Running on AWS (indra_db.reading.read_db_aws)

	A Class to Manage and Monitor AWS Batch Jobs (indra_db.reading.submitter)

	Database Integrated Preassembly Tools
	Database Preassembly (indra_db.preassembly.preassemble_db)

	A Class to Manage and Monitor AWS Batch Jobs (indra_db.preassembly.submitter)

	Database Schemas
	Principal Database Schema (indra_db.schemas.principal_schema)
	The Principal Schema

	Readonly Database Schema (indra_db.schemas.readonly_schema)

	Class Mix-ins (indra_db.schemas.mixins)

	Indexes (indra_db.schemas.indexes)

	Utilities
	Database Session Constructors (indra_db.util.constructors)

	Scripts to Get Content (indra_db.util.content_scripts)

	Distilling Raw Statements (indra_db.util.distill_statements)

	Script to Create a SIF Dump (indra_db.util.dump_sif)

	General Helper Functions (indra_db.util.helpers)

	Routines for Inserting Statements and Content (indra_db.util.insert)

	Some Miscellaneous Modules
	Low Level Database Interface (indra_db.databases)

	Belief Calculator (indra_db.belief)

The Client

The purpose of the client is to be the gateway for external access to the
content of the databases. Here we define high level access functions for
getting data out of the database in a natural way. This is where the queries
used by the REST API are defined, and most users looking to access knowledge on
the database should use the client if they can, as it is heavily optimized.

Our system utilizes 2 databases, one which represents the “ground truth”, as
we know it, and is structured naturally for performing updates on our
knowledge; it will always be the most up to date. We also have a “readonly”
database that we used for our outward facing services. This database is
optimized for fast queries and the content in it is updated weekly. Each
database has its own set of access tools.

	The Principal Database Client
	Access Readings and Text Content (indra_db.client.principal.content)

	Submit and Retrieve Curations (indra_db.client.principal.curation)

	Get Raw Statements (indra_db.client.principal.raw_statements)

	The Readonly Client
	Construct composable queries (indra_db.client.readonly.query)

	Miscellaneous Client APIs (Mostly Deprecated)
	Get Datasets (indra_db.client.datasets)

	Get Statements (indra_db.client.statements)

The Principal Database Client

This is the set of client tools to access the most-nearly ground truth
knowledge stored on the principal database.

Access Readings and Text Content (indra_db.client.principal.content)

This defines a simple API to access the content that we store on the database
for external purposes.

	
indra_db.client.principal.content.get_content_by_refs(db, pmid_list=None, trid_list=None, sources=None, formats=None, content_type='abstract', unzip=True)

	Return content from the database given a list of PMIDs or text ref ids.

Note that either pmid_list OR trid_list must be set, and only one can be
set at a time.

	Parameters

	
	db (DatabaseManager) – Reference to the DB to query

	pmid_list (list[str] or None) – A list of pmids. Default is None, in which case trid_list must be
given.

	trid_list (list[int] or None) – A list of text ref ids. Default is None, in which case pmid list must
be given.

	sources (list[str] or None) – A list of sources to include (e.g. ‘pmc_oa’, or ‘pubmed’). Default is
None, indicating that all sources will be included.

	formats (list[str]) – A list of the formats to be included (‘xml’, ‘text’). Default is None,
indicating that all formats will be included.

	content_type (str) – Select the type of content to load (‘abstract’ or ‘fulltext’). Note
that not all refs will have any, or both, types of content.

	unzip (Optional[bool]) – If True, the compressed output is decompressed into clear text.
Default: True

	Returns

	content_dict – A dictionary whose keys are text ref ids, with each value being the
the corresponding content.

	Return type

	dict

	
indra_db.client.principal.content.get_reader_output(db, ref_id, ref_type='tcid', reader=None, reader_version=None)

	Return reader output for a given text content.

	Parameters

	
	db (DatabaseManager) – Reference to the DB to query

	ref_id (int or str) – The text reference ID whose reader output should be returned

	ref_type (Optional[str]) – The type of ID to look for, options include
‘tcid’ for the database’s internal unique text content ID,
or ‘pmid’, ‘pmcid’, ‘doi, ‘pii’, ‘manuscript_id’
Default: ‘tcid’

	reader (Optional[str]) – The name of the reader whose output is of interest

	reader_version (Optional[str]) – The specific version of the reader

	Returns

	reading_results – A dict of reader outputs that match the query criteria, indexed first
by text content id, then by reader.

	Return type

	dict{dict{list[str]}}

Submit and Retrieve Curations (indra_db.client.principal.curation)

On our services, users have the ability to curate the results we present,
indicating whether they are correct or not, and how they may be incorrect. The
API for adding and retrieving that input is defined here.

	
indra_db.client.principal.curation.get_curations(db=None, **params)

	Get all curations for a certain level given certain criteria.

	
indra_db.client.principal.curation.get_grounding_curations(db=None)

	Return a dict of curated groundings from a given database.

	Parameters

	db (Optional[DatabaseManager]) – A database manager object used to access the database. If not given,
the database configured as primary is used.

	Returns

	A dict whose keys are raw text strings and whose values are dicts of DB
name space to DB ID mappings corresponding to the curated grounding.

	Return type

	dict

	
indra_db.client.principal.curation.submit_curation(hash_val, tag, curator, ip, text=None, ev_hash=None, source='direct_client', pa_json=None, ev_json=None, db=None)

	Submit a curation for a given preassembled or raw extraction.

	Parameters

	
	hash_val (int) – The hash corresponding to the statement.

	tag (str) – A very short phrase categorizing the error or type of curation.

	curator (str) – The name or identifier for the curator.

	ip (str) – The ip address of user’s computer.

	text (str) – A brief description of the problem.

	ev_hash (int) – A hash of the sentence and other evidence information. Elsewhere
referred to as source_hash.

	source (str) – The name of the access point through which the curation was performed.
The default is ‘direct_client’, meaning this function was used
directly. Any higher-level application should identify itself here.

	pa_json (Optional[dict]) – The JSON of a preassembled or raw statement that was curated. If None,
we will try to get the pa_json from the database.

	ev_json (Optional[dict]) – The JSON of the evidence that was curated. This cannot be retrieved from
the database if not given.

	db (DatabaseManager) – A database manager object used to access the database.

Get Raw Statements (indra_db.client.principal.raw_statements)

Get the raw, uncleaned and un-merged Statements based on agent and type or by
paper(s) of origin.

	
indra_db.client.principal.raw_statements.get_raw_stmt_jsons(clauses=None, db=None, max_stmts=None, offset=None)

	Get Raw Statements from the principle database, given arbitrary clauses.

	
indra_db.client.principal.raw_statements.get_raw_stmt_jsons_from_agents(agents=None, stmt_type=None, db=None, max_stmts=None, offset=None)

	Get Raw statement jsons from a list of agent refs and Statement type.

	
indra_db.client.principal.raw_statements.get_raw_stmt_jsons_from_papers(id_list, id_type='pmid', db=None, max_stmts=None, offset=None)

	Get raw statement jsons for a given list of papers.

	Parameters

	
	id_list (list) – A list of ints or strs that are ids of papers of type id_type.

	id_type (str) – Default is ‘pmid’. The type of ids given in id_list, e.g. ‘pmid’,
‘pmcid’, ‘trid’.

	db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local database instance.

	Returns

	result_dict – A dictionary keyed by id (of id_type) with a list of raw statement
json objects as each value. Ids for which no statements are found will
not be included in the dict.

	Return type

	dict

The Readonly Client

Here are our primary tools intended for retrieving Statements, in particular
Pre-Assembled (PA) Statements, from the readonly database. This is some of the
most heavily optimized access code in the repo, and is the backbone of most
external or outward facing applications.

The readonly database, as the name suggests, is designed to take only read
requests, and is updated via dump only once a week. This allows users of
our database to access it even as we perform daily updates on the principal
database, without worrying about queries interfering.

Construct composable queries (indra_db.client.readonly.query)

This is a sophisticated system of classes that can be used to form queires
for preassembled statements from the readonly database.

	
class indra_db.client.readonly.query.Query(empty=False, full=False)

	The core class for all queries; not functional on its own.

	
copy()

	Get a _copy of this query.

	
invert()

	A useful way to get the inversion of a query in order of operations.

When chain operations, ~q is evaluated after all . terms. This
allows you to cleanly bypass that issue, having:

HasReadings().invert().get_statements(ro)

rather than

(~HasReadings()).get_statements()

which is harder to read.

	
set_print_only(print_only)

	Choose to only print the SQL and not execute it.

This is very useful for debugging the SQL queries that are generated.

	
get_statements(ro=None, limit=None, offset=None, sort_by='ev_count', ev_limit=None, evidence_filter=None) → Optional[indra.sources.indra_db_rest.query_results.StatementQueryResult]

	Get the statements that satisfy this query.

	Parameters

	
	ro (DatabaseManager) – A database manager handle that has valid Readonly tables built.

	limit (int) – Control the maximum number of results returned. As a rule, unless
you are quite sure the query will result in a small number of
matches, you should limit the query.

	offset (int) – Get results starting from the value of offset. This along with limit
allows you to page through results.

	sort_by (str) – Options are currently ‘ev_count’ or ‘belief’. Results will return in
order of the given parameter.

	ev_limit (int) – Limit the number of evidence returned for each statement.

	evidence_filter (None or EvidenceFilter) – If None, no filtering will be applied. Otherwise, an EvidenceFilter
class must be provided.

	Returns

	result – An object holding the JSON result from the database, as well as the
metadata for the query.

	Return type

	StatementQueryResult

	
get_hashes(ro=None, limit=None, offset=None, sort_by='ev_count', with_src_counts=True) → Optional[indra.sources.indra_db_rest.query_results.QueryResult]

	Get the hashes of statements that satisfy this query.

	Parameters

	
	ro (DatabaseManager) – A database manager handle that has valid Readonly tables built.

	limit (int) – Control the maximum number of results returned. As a rule, unless
you are quite sure the query will result in a small number of
matches, you should limit the query.

	offset (int) – Get results starting from the value of offset. This along with limit
allows you to page through results.

	sort_by (str) – ‘ev_count’ or ‘belief’: select the parameter by which results are
sorted.

	with_src_counts (bool) – Choose whether source counts are included with the result or not.
The default is True (included), but the query may be marginally
faster with source counts excluded (False).

	Returns

	result – An object holding the results of the query, as well as the metadata
for the query definition.

	Return type

	QueryResult

	
get_interactions(ro=None, limit=None, offset=None, sort_by='ev_count') → Optional[indra.sources.indra_db_rest.query_results.QueryResult]

	Get the simple interaction information from the Statements metadata.

Each entry in the result corresponds to a single preassembled Statement,
distinguished by its hash.

	Parameters

	
	ro (DatabaseManager) – A database manager handle that has valid Readonly tables built.

	limit (int) – Control the maximum number of results returned. As a rule, unless
you are quite sure the query will result in a small number of
matches, you should limit the query.

	offset (int) – Get results starting from the value of offset. This along with limit
allows you to page through results.

	sort_by (str) – Options are currently ‘ev_count’ or ‘belief’. Results will return in
order of the given parameter.

	
get_relations(ro=None, limit=None, offset=None, sort_by='ev_count', with_hashes=False) → Optional[indra.sources.indra_db_rest.query_results.QueryResult]

	Get the agent and type information from the Statements metadata.

Each entry in the result corresponds to a relation, meaning an
interaction type, and the names of the agents involved.

	Parameters

	
	ro (DatabaseManager) – A database manager handle that has valid Readonly tables built.

	limit (int) – Control the maximum number of results returned. As a rule, unless
you are quite sure the query will result in a small number of
matches, you should limit the query.

	offset (int) – Get results starting from the value of offset. This along with limit
allows you to page through results.

	sort_by (str) – Options are currently ‘ev_count’ or ‘belief’. Results will return in
order of the given parameter.

	with_hashes (bool) – Default is False. If True, retrieve all the hashes that fit within
each relational grouping.

	
get_agents(ro=None, limit=None, offset=None, sort_by='ev_count', with_hashes=False, complexes_covered=None) → Optional[indra.sources.indra_db_rest.query_results.QueryResult]

	Get the agent pairs from the Statements metadata.

Each entry is simply a pair (or more) of Agents involved in an
interaction.

	Parameters

	
	ro (Optional[DatabaseManager]) – A database manager handle that has valid Readonly tables built.

	limit (Optional[int]) – Control the maximum number of results returned. As a rule, unless
you are quite sure the query will result in a small number of
matches, you should limit the query.

	offset (Optional[int]) – Get results starting from the value of offset. This along with limit
allows you to page through results.

	sort_by (str) – Options are currently ‘ev_count’ or ‘belief’. Results will return in
order of the given parameter.

	with_hashes (bool) – Default is False. If True, retrieve all the hashes that fit within
each agent pair grouping.

	complexes_covered (Optional[set]) – The set of hashes for complexes that you have already seen and would
like skipped.

	
to_json() → dict

	Get the JSON representation of this query.

	
classmethod from_simple_json(json_dict)

	Generate a proper query from a simplified JSON.

	
list_component_queries() → list

	Get a list of the query elements included, in no particular order.

	
build_hash_query(ro, type_queries=None)

	[Internal] Build the query for hashes.

	
is_inverse_of(other)

	Check if a query is the exact opposite of another.

	
class indra_db.client.readonly.query.Intersection(query_list)

	The Intersection of multiple queries.

Baring special handling, this is what results from q1 & q2.

NOTE: the inverse of an Intersection is a Union (De Morgans’s Law)

	
ev_filter()

	Get an evidence filter composed of the “and” of sub-query filters.

	
is_inverse_of(other)

	Check if this query is the inverse of another.

	
class indra_db.client.readonly.query.Union(query_list)

	The union of multiple queries.

Baring special handling, this is generally the result of q1 | q2.

NOTE: the inverse of a Union is an Intersection (De Morgans’s Law)

	
ev_filter()

	Get an evidence filter composed of the “or” of sub-query filters.

	
is_inverse_of(other)

	Check if this query is the inverse of another.

	
class indra_db.client.readonly.query.MergeQuery(query_list, *args, **kwargs)

	This is the parent of the two merge classes: Intersection and Union.

This class of queries is extremely special, in that the “table” is actually
constructed on the fly. This presents various subtle challenges. Moreover
an intersection/union is an expensive process, so I go to great lengths to
minimize its use, making the __init__ methods quite hefty. It is also in
Intersections and Unions that full and empty states are most likely to
occur, and in some wonderfully subtle and hard to find ways.

	
class indra_db.client.readonly.query.HasAgent(agent_id=None, namespace='NAME', role=None, agent_num=None)

	Get Statements that have a particular agent in a particular role.

NOTE: At this time 2 agent queries do NOT necessarily imply that the 2
agents are different. E.g. `HasAgent("MEK") & HasAgent("MEK")` will get
any Statements that have agent with name MEK, not Statements with two agents
called MEK. This may change in the future, however in the meantime you can
get around this fairly well by specifying the roles:

>>> HasAgent("MEK", role="SUBJECT") & HasAgent("MEK", role="OBJECT")

Or for a more complicated case, consider a query for Statements where one
agent is MEK and the other has namespace FPLX. Naturally any agent labeled
as MEK will also have a namespace FPLX (MEK is a famplex identifier), and
in general you will not want to constrain which role is MEK and which is the
“other” agent. To accomplish this you need to use `|`:

>>> (
>>> HasAgent("MEK", role="SUBJECT")
>>> & HasAgent(namespace="FPLX", role="OBJECT")
>>>) | (
>>> HasAgent("MEK", role="OBJECT")
>>> & HasAgent(namespace="FPLX", role="SUBJECT")
>>>)

	Parameters

	
	agent_id (Optional[str]) – The ID string naming the agent, for example ‘ERK’ (FPLX or NAME) or
‘plx’ (TEXT), and so on. If None, the query must then be constrained by
the namespace. (Default is None)

	namespace (Optional[str]) – By default, this is NAME, indicating the canonical name of
the agent. Other options for namespace include FPLX (FamPlex), CHEBI,
CHEMBL, HGNC, UP (UniProt), TEXT (for raw text mentions), and many more.
If you use the namespace AUTO, GILDA will be used to try and guess the
proper namespace and agent ID. If agent_id is None, namespace must be
specified and must not be NAME, TEXT, or AUTO.

	role (Optional[str]) – Options are “SUBJECT”, “OBJECT”, or “OTHER”. (Default is None)

	agent_num (Optional[int]) – The regularized position of the agent in the Statement’s list of agents.
(Default is None)

	
class indra_db.client.readonly.query.FromMeshIds(mesh_ids: list)

	Find Statements whose text sources were given one of a list of MeSH IDs.

This object can be constructed from a list of mixed “D” and “C” type mesh
IDs, but for reasons of querying, those IDs will be separated into two
separate classes and a Union of the two classes returned.

	Parameters

	mesh_ids (list) – A canonical MeSH ID, of the “C” or “D” variety, e.g. “D000135”.

	
mesh_ids

	The immutable tuple of mesh IDs, on their original string form.

	Type

	tuple

	
_mesh_type

	“C” or “D” indicating which types of IDs are held in this object.

	Type

	str

	
_mesh_nums

	The mesh IDs converted to integers, stripped of their prefix.

	Type

	list[int]

	
ev_filter()

	Get an evidence filter to enforce mesh constraints at ev level.

	
class indra_db.client.readonly.query.HasHash(stmt_hashes)

	Find Statements from a list of hashes.

	Parameters

	stmt_hashes (list or set or tuple) – A collection of integers, where each integer is a shallow matches key
hash of a Statement (frequently simply called “mk_hash” or “hash”)

	
class indra_db.client.readonly.query.HasSources(sources)

	Find Statements that include a set of sources.

For example, find Statements that have support from both medscan and reach.

	Parameters

	sources (list or set or tuple) – A collection of strings, each string the canonical name for a source.
The result will include statements that have evidence from ALL sources
that you include.

	
class indra_db.client.readonly.query.HasOnlySource(only_source)

	Find Statements that come exclusively from a particular source.

For example, find statements that come only from sparser.

	Parameters

	only_source (str) – The only source that spawned the statement, e.g. signor, or reach.

	
class indra_db.client.readonly.query.HasReadings

	Find Statements that have readings.

	
class indra_db.client.readonly.query.HasDatabases

	Find Statements that have databases.

	
class indra_db.client.readonly.query.SourceQuery(empty=False, full=False)

	The core of all queries that use SourceMeta.

	
class indra_db.client.readonly.query.SourceIntersection(source_queries)

	A special type of intersection between children of SourceQuery.

All SourceQuery queries use the same table, so when doing an intersection it
doesn’t make sense to do an actual intersection operation, and instead
simply apply all the filters of each query to build a normal multi-
conditioned query.

	
is_inverse_of(other)

	Check if this query is the inverse of another.

	
class indra_db.client.readonly.query.HasType(stmt_types, include_subclasses=False)

	Find Statements that are one of a collection of types.

For example, you can find Statements that are Phosphorylations or
Activations, or you could find all subclasses of RegulateActivity.

NOTE: when used in an Intersection with other queries, type is handled
specially, with each sub query having a type constraint added to it.

	Parameters

	
	stmt_types (set or list or tuple) – A collection of Strings, where each string is a class name for a type
of Statement. Spelling and capitalization are necessary.

	include_subclasses (bool) – (optional) default is False. If True, each Statement type given in the
list will be expanded to include all of its sub classes.

	
item_type

	alias of str

	
class indra_db.client.readonly.query.IntrusiveQuery(value_list)

	This is the parent of all queries that draw on info in all meta tables.

Thus, when using these queries in an Intersection, they are applied to each
sub query separately.

	
class indra_db.client.readonly.query.HasNumAgents(agent_nums)

	Find Statements with any one of a listed number of agents.

For example, HasNumAgents([1,3,4]) will return agents with either 2,
3, or 4 agents (the latter two mostly being complexes).

NOTE: when used in an Interaction with other queries, the agent numbers are
handled specially, with each sub-query having an agent_count constraint
applied to it.

	Parameters

	agent_nums (tuple) – A list of integers, each indicating a number of agents.

	
item_type

	alias of int

	
class indra_db.client.readonly.query.HasNumEvidence(evidence_nums)

	Find Statements with one of a given number of evidence.

For example, HasNumEvidence([2,3,4]) will return Statements that have
either 2, 3, or 4 evidence.

NOTE: when used in an Interaction with other queries, the evidence count is
handled specially, with each sub-query having an ev_count constraint
added to it.

	Parameters

	evidence_nums (tuple) – A list of numbers greater than 0, each indicating a number of evidence.

	
item_type

	alias of int

	
class indra_db.client.readonly.query.FromPapers(paper_list)

	Find Statements that have evidence from particular papers.

	Parameters

	paper_list (list[(<id_type>, <paper_id>)]) – A list of tuples, where each tuple indicates and id-type (e.g. ‘pmid’)
and an id value for a particular paper.

	
class indra_db.client.readonly.query.EvidenceFilter(filters=None, joiner='and')

	Object for handling filtering of evidence.

We need to be able to perform logical operations between evidence to handle
important cases:

	HasSource(['reach']) & FromMeshIds(['D0001']): we might reasonably
want to filter evidence for the second subquery but not the first.

	HasOnlySource(['reach']) & FromMeshIds(['D00001']): Here we would
likely want to filter the evidence for both sub queries.

	HasOnlySource(['reach']) | FromMeshIds(['D000001']): It is not clear
what this even means (its purpose) or what we’d do for evidence filtering
when the original statements are or’ed

	HasDatabases() & FromMeshIds(['D000001']): Here you COULDN’T perform
an & on the evidence, because the two sources are mutually exclusive
(only readings connect to mesh annotations). However it could make sense
you would want to do an “or” between the evidence, so the evidence is
either from a database or from a mesh annotated document.

Both “filter all the evidence” and “filter none of the evidence” should
definitely be options. Although “Filter for all” might run into uses with
the “HasDatabase and FromMeshIds” scenario. I think no evidence filter
should be the default, and if you attempt a bogus “filter all evidence” (as
with that scenario) you get an error.

	
class indra_db.client.readonly.query.FromAgentJson(agent_json, stmt_type=None, hashes=None)

	A Very special type of query that is used for digging into results.

	
class indra_db.client.readonly.query.HasEvidenceBound(evidence_bounds: Iterable[Union[str, indra_db.client.readonly.query.Bound]])

	Find Statements that fit given evidence bounds.

A list of bounds will be combined using the logic of “or”, so [“<1”, “>3”]
will return Statements that are _either_ less than 1 OR greater than 3.

	Parameters

	evidence_bounds – An iterable containing bounds for the evidence support of Statements to
be returned, such as Bound(”< 10”) or simply “< 10” (the string will
be parsed into a Bound object, if possible).

Miscellaneous Client APIs (Mostly Deprecated)

There are some, generally archaic, client functions which use both readonly
and principal resources. I make no guarantee that these will work.

Get Datasets (indra_db.client.datasets)

An early attempt at something very like the indra_db.client.readonly.interactions
approach to getting superficial data out of the database.

	
indra_db.client.datasets.export_relation_dict_to_tsv(relation_dict, out_base, out_types=None)

	Export a relation dict (from get_relation_dict) to a tsv.

Available output types are:

	“full_tsv” : get a tsv with directed pairs of entities (e.g. HGNC
symbols), the type of relation (e.g. Phosphorylation) and the hash
of the preassembled statement. Columns are agent_1, agent_2 (where
agent_1 affects agent_2), type, hash.

	“short_tsv” : like the above, but without the hashes, so only one
instance of each pair and type trio occurs. However, the information
cannot be traced. Columns are agent_1, agent_2, type, where agent_1
affects agent_2.

	“pairs_tsv” : like the above, but without the relation type. Similarly,
each row is unique. In addition, the agents are undirected. Thus this
is purely a list of pairs of related entities. The columns are just
agent_1 and agent_2, where nothing is implied by the ordering.

	Parameters

	
	relation_dict (dict) – This should be the output from get_relation_dict, or something
equivalently constructed.

	out_base (str) – The base-name for the output files.

	out_types (list[str]) – A list of the types of tsv to output. See above for details.

	
indra_db.client.datasets.get_relation_dict(db, groundings=None, with_evidence_count=False, with_support_count=False)

	Get a dictionary of entity interactions from the database.

Use only metadata from the database to rapidly get simple interaction data.
This is much faster than handling the full Statement jsons, while providing
some basic valuable functionality.

	Parameters

	
	db (DatabaseManager instance) – An instance of a database manager.

	groundings (list[str] or None) – Select which types of grounding namespaces to include, e.g. HGNC, or
FPLX, or both. Only agent refs with these groundings will be selected.
If None, only HGNC is used.

	with_evidence_count (bool) – Default is False. If True, an additional query will be made for each
statement to get the count of supporting evidence, which is a useful
proxy for belief.

	with_support_count (bool) – Default is False. Like with_evidence_count, except the number of
supporting statements is counted.

	
indra_db.client.datasets.get_statement_essentials(clauses, count=1000, db=None, preassembled=True)

	Get the type, agents, and id data for the specified statements.

This function is useful for light-weight searches of basic mechanistic
information, without the need to follow as many links in the database to
populate the Statement objects.

To get full statements, use get_statements.

	Parameters

	
	clauses (list) – list of sqlalchemy WHERE clauses to pass to the filter query.

	count (int) – Number of statements to retrieve and process in each batch.

	db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local database instance.

	preassembled (bool) – If true, statements will be selected from the table of pre-assembled
statements. Otherwise, they will be selected from the raw statements.
Default is True.

	Returns

	(uuid, sid, hash, type, (agent_1, agent_2, …)).

	Return type

	A list of tuples containing

Get Statements (indra_db.client.statements)

The first round of tools written to get Statements out of the database,
utilizing far too many queries and taking absurdly long to complete. Most of
their functions have been outmoded, with the exception of getting PA Statements
from the principal database, which (as of this writing) has yet to be
implemented.

	
indra_db.client.statements.get_evidence(pa_stmt_list, db=None, fix_refs=True, use_views=True)

	Fill in the evidence for a list of pre-assembled statements.

	Parameters

	
	pa_stmt_list (list[Statement]) – A list of unique statements, generally drawn from the database
pa_statement table (via get_statemetns).

	db (DatabaseManager instance or None) – An instance of a database manager. If None, defaults to the “primary”
database, as defined in the db_config.ini file in .config/indra.

	fix_refs (bool) – The paper refs within the evidence objects are not populated in the
database, and thus must be filled using the relations in the database.
If True (default), the pmid field of each Statement Evidence object
is set to the correct PMIDs, or None if no PMID is available. If False,
the pmid field defaults to the value populated by the reading
system.

	Return type

	None - modifications are made to the Statements “in-place”.

	
indra_db.client.statements.get_statements(clauses, count=1000, do_stmt_count=False, db=None, preassembled=True, with_support=False, fix_refs=True, with_evidence=True)

	Select statements according to a given set of clauses.

	Parameters

	
	clauses (list) – list of sqlalchemy WHERE clauses to pass to the filter query.

	count (int) – Number of statements to retrieve and process in each batch.

	do_stmt_count (bool) – Whether or not to perform an initial statement counting step to give
more meaningful progress messages.

	db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local database instance.

	preassembled (bool) – If true, statements will be selected from the table of pre-assembled
statements. Otherwise, they will be selected from the raw statements.
Default is True.

	with_support (bool) – Choose whether to populate the supports and supported_by list
attributes of the Statement objects. General results in slower queries.

	with_evidence (bool) – Choose whether or not to populate the evidence list attribute of the
Statements. As with with_support, setting this to True will take
longer.

	fix_refs (bool) – The paper refs within the evidence objects are not populated in the
database, and thus must be filled using the relations in the database.
If True (default), the pmid field of each Statement Evidence object
is set to the correct PMIDs, or None if no PMID is available. If False,
the pmid field defaults to the value populated by the reading
system.

	Return type

	list of Statements from the database corresponding to the query.

	
indra_db.client.statements.get_statements_by_gene_role_type(agent_id=None, agent_ns='HGNC-SYMBOL', role=None, stmt_type=None, count=1000, db=None, do_stmt_count=False, preassembled=True, fix_refs=True, with_evidence=True, with_support=False, essentials_only=False)

	Get statements from the DB by stmt type, agent, and/or agent role.

WARNING: This function will be removed in the future. Please look to
indra_db.client.readonly.query and indra_db.client.principal.raw_statements
for alternatives.

	Parameters

	
	agent_id (str) – String representing the identifier of the agent from the given
namespace. Note: if the agent namespace argument, agent_ns, is set
to ‘HGNC-SYMBOL’, this function will treat agent_id as an HGNC gene
symbol and perform an internal lookup of the corresponding HGNC ID.
Default is ‘HGNC-SYMBOL’.

	agent_ns (str) – Namespace for the identifier given in agent_id.

	role (str) – String corresponding to the role of the agent in the statement.
Options are ‘SUBJECT’, ‘OBJECT’, or ‘OTHER’ (in the case of Complex,
SelfModification, and ActiveForm Statements).

	stmt_type (str) – Name of the Statement class.

	count (int (DEPRECATED)) – Number of statements to retrieve in each batch (passed to
get_statements()).

	db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local databse instance.

	do_stmt_count (bool (DEPRECATED)) – Whether or not to perform an initial statement counting step to give
more meaningful progress messages.

	preassembled (bool (DEPRECATED)) – If true, statements will be selected from the table of pre-assembled
statements. Otherwise, they will be selected from the raw statements.
Default is True.

	with_support (bool (DEPRECATED)) – Choose whether to populate the supports and supported_by list
attributes of the Statement objects. Generally results in slower
queries. DEFAULT IS CURRENTLY False.

	with_evidence (bool) – Choose whether or not to populate the evidence list attribute of the
Statements. As with with_support, setting this to True will take
longer.

	fix_refs (bool (DEPRECATED)) – The paper refs within the evidence objects are not populated in the
database, and thus must be filled using the relations in the database.
If True (default), the pmid field of each Statement Evidence object
is set to the correct PMIDs, or None if no PMID is available. If False,
the pmid field defaults to the value populated by the reading
system.

	essentials_only (bool (DEPRECATED)) – Default is False. If True, retrieve only some metadata regarding the
statements. Implicitly with_support, with_evidence, fix_refs, and
do_stmt_count are all False, as none of the relevant features apply.

	Returns

	
	if essentials_only is False – list of Statements from the database corresponding to the query.

	else – list of tuples containing basic data from the statements.

	
indra_db.client.statements.get_statements_by_paper(id_list, id_type='pmid', db=None, preassembled=True)

	Get the statements from a list of paper ids.

WARNING: This function will be removed in the future. Please look to
indra_db.client.readonly.query and indra_db.client.principal.raw_statements
for alternatives.

	Parameters

	
	id_list (list or set) – A list of ints or strs that are ids of papers of type id_type.

	id_type (str) – The type of id used (default is pmid). Options include pmid, pmcid,
doi, pii, url, or manuscript_id. Note that pmid is generally the
best means of getting a paper.

	db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local databse instance.

	preassembled (bool) – If True, statements will be selected from the table of pre-assembled
statements. Otherwise, they will be selected from the raw statements.
Default is True.

	Returns

	stmt_dict – A dict of Statements from the database keyed the paper id given. Papers
that yielded no statements are not included. If preassembled is True,
there may be ids which were not present in the original dataset, and
there may be a key None for statements that has evidence from refs that
did not have that id_type of reference.

	Return type

	dict

	
indra_db.client.statements.get_statements_from_hashes(statement_hashes, preassembled=True, db=None, **kwargs)

	Retrieve statement objects given only statement hashes.

WARNING: This function will be removed in the future. Please look to
indra_db.client.readonly.query and indra_db.client.principal.raw_statements
for alternatives.

	
indra_db.client.statements.get_support(statements, db=None, recursive=False)

	Populate the supports and supported_by lists of the given statements.

Pipeline Management CLI

This module creates a CLI for managing the pipelines used to update
content and knowledge in the database, and move or transform that
knowledge on a regular basis.

indra-db

INDRA Database Infrastructure CLI

The INDRA Database is both a physical database and an infrastructure for
managing and updating the content of that physical database. This CLI
is used for executing these management commands.

indra-db [OPTIONS] COMMAND [ARGS]...

content

Manage the text refs and content on the database.

indra-db content [OPTIONS] COMMAND [ARGS]...

list

List the current knowledge sources and their status.

indra-db content list [OPTIONS]

Options

	
-l, --long

	Include a list of the most recently added content for all source types.

run

Upload/update text refs and content on the database.

Usage tasks are:

- upload: use if the knowledge bases have not yet been added.

- update: if they have been added, but need to be updated.

The currently available sources are “pubmed”, “pmc_oa”, and “manuscripts”.

indra-db content run [OPTIONS] {upload|update}
 [[pubmed|pmc_oa|manuscripts]]...

Options

	
-c, --continuing

	Continue uploading or updating, picking up where you left off.

	
-d, --debug

	Run with debugging level output.

Arguments

	
TASK

	Required argument

	
SOURCES

	Optional argument(s)

dump

Manage the data dumps from Principal to files and Readonly.

indra-db dump [OPTIONS] COMMAND [ARGS]...

hierarchy

Dump hierarchy of Dumper classes to S3.

indra-db dump hierarchy [OPTIONS]

list

List existing dumps and their s3 paths.

State options:

- “started”: get all dumps that have started (have “start.json” in them).

- “done”: get all dumps that have finished (have “end.json” in them).

- “unfinished”: get all dumps that have started but not finished.

If no option is given, all dumps will be listed.

indra-db dump list [OPTIONS] [[started|done|unfinished]]

Arguments

	
STATE

	Optional argument

load-readonly

Load the readonly database with readonly schema dump.

indra-db dump load-readonly [OPTIONS]

Options

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

print-database-stats

Print the summary counts for the content on the database.

indra-db dump print-database-stats [OPTIONS]

run

Run dumps.

indra-db dump run [OPTIONS] COMMAND [ARGS]...

all

Generate new dumps and list existing dumps.

indra-db dump run all [OPTIONS]

Options

	
-c, --continuing

	Indicate whether you want the job to continue building an existing dump corpus, or if you want to start a new one.

	
-d, --dump-only

	Only generate the dumps on s3.

	
-l, --load-only

	Only load a readonly dump from s3 into the given readonly database.

	
--delete-existing

	Delete and restart an existing readonly schema in principal.

belief

Dump a dict of belief scores keyed by hash

indra-db dump run belief [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

end

Mark the dump as complete.

indra-db dump run end [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

full-pa-json

Dumps all statements found in FastRawPaLink as jsonl

indra-db dump run full-pa-json [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

full-pa-stmts

Dumps all statements found in FastRawPaLink as a pickle

indra-db dump run full-pa-stmts [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

mti-mesh-ids

Dump a mapping from Statement hashes to MeSH terms.

indra-db dump run mti-mesh-ids [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

principal-statistics

Dump a CSV of extensive counts of content in the principal database.

indra-db dump run principal-statistics [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

readonly

Generate the readonly schema, and dump it using pgdump.

indra-db dump run readonly [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

res-pos

Dumps a dict of dicts with residue/position data from Modifications

indra-db dump run res-pos [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

sif

Dumps a pandas dataframe of preassembled statements

indra-db dump run sif [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

source-count

Dumps a dict of dicts with source counts per source api per statement

indra-db dump run source-count [OPTIONS]

Options

	
-c, --continuing

	Continue a partial dump, if applicable.

	
-d, --date-stamp <date_stamp>

	Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is built.

	
-f, --force

	Run the build even if the dump file has already been produced.

	
--from-dump <from_dump>

	Indicate a specific start dump from which to build. The default is the most recent.

start

Initialize the dump on s3, marking the start datetime of the dump.

indra-db dump run start [OPTIONS]

Options

	
-c, --continuing

	Add this flag to only create a new start if an unfinished start does not already exist.

kb

Manage the Knowledge Bases used by the database.

indra-db kb [OPTIONS] COMMAND [ARGS]...

list

List the knowledge sources and their status.

indra-db kb list [OPTIONS]

run

Upload/update the knowledge bases used by the database.

Usage tasks are:

- upload: use if the knowledge bases have not yet been added.

- update: if they have been added, but need to be updated.

Specify which knowledge base sources to update by their name, e.g. “Pathway
Commons” or “pc”. If not specified, all sources will be updated.

indra-db kb run [OPTIONS] {upload|update} [SOURCES]...

Arguments

	
TASK

	Required argument

	
SOURCES

	Optional argument(s)

pa

Manage the preassembly pipeline.

indra-db pa [OPTIONS] COMMAND [ARGS]...

list

List the latest updates for each type of Statement.

indra-db pa list [OPTIONS]

Options

	
-r, --with-raw

	Include the latest datetimes for raw statements of each type. This will take much longer.

run

Manage the indra_db preassembly.

Tasks:

- “create”: populate the pa_statements table for the first time (this

requires that the table be empty).

- “update”: update the existing content in pa_statements with the latest

from raw statements.

A project name is required to tag the AWS instances with a “project” tag.

indra-db pa run [OPTIONS] {create|update} [PROJECT_NAME]

Arguments

	
TASK

	Required argument

	
PROJECT_NAME

	Optional argument

pipeline-stats

Manage the pipeline stats gathered on s3.

All major upload and update pipelines have basic timeing and success-failure
stats gather on them using the
DataGatherer class
wrapper.

These stats are displayed on the /monitor endpoint of the database
service.

Tasks are:

- gather: gather the individual job JSONs into an aggregated file.

indra-db pipeline-stats [OPTIONS] {gather}

Arguments

	
TASK

	Required argument

reading

Manage the reading jobs.

indra-db reading [OPTIONS] COMMAND [ARGS]...

list

List the readers and their most recent runs.

indra-db reading list [OPTIONS]

run

Manage the the reading of text content on AWS.

Tasks:

- “all”: Read all the content available.

- “new”: Read only the new content that has not been read.

indra-db reading run [OPTIONS] {all|new}

Options

	
-b, --buffer <buffer>

	Set the number of buffer days to read prior to the most recent update. The default is 1 day.

	
--project-name <project_name>

	Set the project name to be different from the config default.

Arguments

	
TASK

	Required argument

run-local

Run reading locally, save the results on the database.

Tasks:

- “all”: Read all the content available.

- “new”: Read only the new content that has not been read.

indra-db reading run-local [OPTIONS] {all|new}

Options

	
-b, --buffer <buffer>

	Set the number of buffer days to read prior to the most recent update. The default is 1 day.

	
-n, --num-procs <num_procs>

	Select the number of processors to use.

Arguments

	
TASK

	Required argument

xdd

Manage xDD runs.

indra-db xdd [OPTIONS] COMMAND [ARGS]...

run

Process the latest outputs from xDD.

indra-db xdd run [OPTIONS]

Pipeline CLI Implementations

Content (indra_db.cli.content)

The Content CLI manages the text content that is
stored in the database. A parent class is defined, and managers for different
sources (e.g. PubMed) can be defined by inheriting from this parent. This file
is also used as the shell command to run updates of the content.

	
exception indra_db.cli.content.UploadError

	

	
class indra_db.cli.content.ContentManager

	Abstract class for all upload/update managers.

This abstract class provides the api required for any object that is
used to manage content between the database and the content.

	
upload_text_content(db, data)

	Insert text content into the database using COPY.

	
make_text_ref_str(tr)

	Make a string from a text ref using tr_cols.

	
add_to_review(desc, msg)

	Add an entry to the review document.

	
filter_text_refs(db, tr_data_set, primary_id_types=None)

	Try to reconcile the data we have with what’s already on the db.

Note that this method is VERY slow in general, and therefore should
be avoided whenever possible.

The process can be sped up considerably by multiple orders of
magnitude if you specify a limited set of id types to query to get
text refs. This does leave some possibility of missing relevant refs.

	
classmethod get_latest_update(db)

	Get the date of the latest update.

	
populate(db)

	A stub for the method used to initially populate the database.

	
update(db)

	A stub for the method used to update the content on the database.

	
class indra_db.cli.content.Pubmed(*args, categories=None, tables=None, max_annotations=500000, **kwargs)

	Manager for the pubmed/medline content.

For relevant updates from NCBI on the managemetn and upkeep of the PubMed
Abstract FTP server, see here:

https://www.nlm.nih.gov/databases/download/pubmed_medline.html

	
static fix_doi(doi)

	Sometimes the doi is doubled (no idea why). Fix it.

	
load_annotations(db, tr_data)

	Load annotations into the database.

	
load_text_refs(db, tr_data, update_existing=False)

	Sanitize, update old, and upload new text refs.

	
iter_contents(archives=None)

	Iterate over the files in the archive, yielding ref and content data.

	Parameters

	archives (Optional[Iterable[str]]) – The names of the archive files from the FTP server to processes. If
None, all available archives will be iterated over.

	Yields

	
	label (tuple) – A key representing the particular XML: (XML File Name, Entry Number,
Total Entries)

	text_ref_dict (dict) – A dictionary containing the text ref information.

	text_content_dict (dict) – A dictionary containing the text content information.

	
load_files(db, files, continuing=False, carefully=False, log_update=True)

	Load the files in subdirectory indicated by dirname.

	
dump_annotations(db)

	Dump all the annotations that have been saved so far.

	
populate(db, continuing=False)

	Perform the initial input of the pubmed content into the database.

	Parameters

	
	db (indra.db.DatabaseManager instance) – The database to which the data will be uploaded.

	continuing (bool) – If true, assume that we are picking up after an error, or otherwise
continuing from an earlier process. This means we will skip over
source files contained in the database. If false, all files will be
read and parsed.

	
update(db)

	Update the contents of the database with the latest articles.

	
class indra_db.cli.content.PmcManager(*args, **kwargs)

	Abstract class for uploaders of PMC content: PmcOA and Manuscripts.

	
update(db)

	A stub for the method used to update the content on the database.

	
static get_missing_pmids(db, tr_data)

	Try to get missing pmids using the pmc client.

	
filter_text_content(db, tc_data)

	Filter the text content to identify pre-existing records.

	
upload_batch(db, tr_data, tc_data)

	Add a batch of text refs and text content to the database.

	
get_data_from_xml_str(xml_str, filename)

	Get the data out of the xml string.

	
get_license(pmcid)

	Get the license for this pmcid.

	
download_archive(archive, continuing=False)

	Download the archive.

	
iter_xmls(archives=None, continuing=False, pmcid_set=None)

	Iterate over the xmls in the given archives.

	Parameters

	
	archives (Optional[Iterable[str]]) – The names of the archive files from the FTP server to processes. If
None, all available archives will be iterated over.

	continuing (Optional[Bool]) – If True, look for locally saved archives to parse, saving the time
of downloading.

	pmcid_set (Optional[set[str]]) – A set of PMCIDs whose content you want returned from each archive.
Many archives are massive repositories with 10s of thousands of
papers in each, and only a fraction may need to be returned.
Extracting and processing XMLs can be time consuming, so skipping
those you don’t need can really pay off!

	Yields

	
	label (Tuple) – A key representing the particular XML: (Archive Name, Entry Number,
Total Entries)

	xml_name (str) – The name of the XML file.

	xml_str (str) – The extracted XML string.

	
iter_contents(archives=None, continuing=False, pmcid_set=None)

	Iterate over the files in the archive, yielding ref and content data.

	Parameters

	
	archives (Optional[Iterable[str]]) – The names of the archive files from the FTP server to processes. If
None, all available archives will be iterated over.

	continuing (Optional[Bool]) – If True, look for locally saved archives to parse, saving the time
of downloading.

	pmcid_set (Optional[set[str]]) – A set of PMCIDs whose content you want returned from each archive.
Many archives are massive repositories with 10s of thousands of
papers in each, and only a fraction may need to be returned.
Extracting and processing XMLs can be time consuming, so skipping
those you don’t need can really pay off!

	Yields

	
	label (tuple) – A key representing the particular XML: (Archive Name, Entry Number,
Total Entries)

	text_ref_dict (dict) – A dictionary containing the text ref information.

	text_content_dict (dict) – A dictionary containing the text content information.

	
upload_archives(db, archives=None, continuing=False, pmcid_set=None, batch_size=10000)

	Do the grunt work of downloading and processing a list of archives.

	Parameters

	
	db (PrincipalDatabaseManager) – A handle to the principal database.

	archives (Optional[Iterable[str]]) – An iterable of archive names from the FTP server.

	continuing (bool) – If True, best effort will be made to avoid repeating work already
done using some cached files and downloaded archives. If False, it
is assumed the caches are empty.

	pmcid_set (set[str]) – A set of PMC Ids to include from this list of archives.

	batch_size (Optional[int]) – Default is 10,000. The number of pieces of content to submit to the
database at a time.

	
populate(db, continuing=False)

	Perform the initial population of the pmc content into the database.

	Parameters

	
	db (indra.db.DatabaseManager instance) – The database to which the data will be uploaded.

	continuing (bool) – If true, assume that we are picking up after an error, or
otherwise continuing from an earlier process. This means we will
skip over source files contained in the database. If false, all
files will be read and parsed.

	Returns

	completed – If True, an update was completed. Othewise, the updload was aborted
for some reason, often because the upload was already completed
at some earlier time.

	Return type

	bool

	
get_pmcid_file_dict()

	Get a dict keyed by PMCID mapping them to file names.

	
get_csv_files(path)

	Get a list of CSV files from the FTP server.

	
class indra_db.cli.content.PmcOA(*args, **kwargs)

	ContentManager for the pmc open access content.

For further details on the API, see the parent class: PmcManager.

	
get_license(pmcid)

	Get the license for this pmcid.

	
get_file_data()

	Retrieve the metadata provided by the FTP server for files.

	
get_archives_after_date(min_date)

	Get the names of all single-article archives after the given date.

	
update(db)

	A stub for the method used to update the content on the database.

	
class indra_db.cli.content.Manuscripts(*args, **kwargs)

	ContentManager for the pmc manuscripts.

For further details on the API, see the parent class: PmcManager.

	
get_license(pmcid)

	Get the license for this pmcid.

	
get_file_data()

	Retrieve the metadata provided by the FTP server for files.

	
get_tarname_from_filename(fname)

	Get the name of the tar file based on the file name (or a pmcid).

	
enrich_textrefs(db)

	Method to add manuscript_ids to the text refs.

	
update(db)

	Add any new content found in the archives.

Note that this is very much the same as populating for manuscripts,
as there are no finer grained means of getting manuscripts than just
looking through the massive archive files. We do check to see if there
are any new listings in each files, minimizing the amount of time
downloading and searching, however this will in general be the slowest
of the update methods.

The continuing feature isn’t implemented yet.

	
class indra_db.cli.content.Elsevier(*args, **kwargs)

	Content manager for maintaining content from Elsevier.

	
populate(db, n_procs=1, continuing=False)

	Load all available elsevier content for refs with no pmc content.

	
update(db, n_procs=1, buffer_days=15)

	Load all available new elsevier content from new pmids.

Reading (indra_db.cli.reading)

The Reading CLI handles the reading of the text contend and the processing
of those readings into statements. As with Content CLI, different reading
pipelines can be handled by defining children of a parent class.

	
exception indra_db.cli.reading.ReadingUpdateError

	

	
class indra_db.cli.reading.ReadingManager(reader_names, buffer_days=1, only_unread=False)

	Abstract class for managing the readings of the database.

	Parameters

	
	reader_names (lsit [str]) – A list of the names of the readers to be used in a given run of
reading.

	buffer_days (int) – The number of days before the previous update/initial upload to look for
“new” content to be read. This prevents any issues with overlaps between
the content upload pipeline and the reading pipeline.

	only_unread (bool) – Only read papers that have not been read (making the determination can
be expensive).

	
static get_latest_updates(db)

	Get the date of the latest update.

	
read_all(db, reader_name)

	Perform an initial reading all content in the database (populate).

This must be defined in a child class.

	
read_new(db, reader_name)

	Read only new content (update).

This must be defined in a child class.

	
class indra_db.cli.reading.BulkReadingManager(reader_names, buffer_days=1, only_unread=False)

	An abstract class which defines methods required for reading in bulk.

This takes exactly the parameters used by ReadingManager.

	
read_all(db, reader_name)

	Read everything available on the database.

	
read_new(db, reader_name)

	Update the readings and raw statements in the database.

	
class indra_db.cli.reading.BulkAwsReadingManager(*args, **kwargs)

	This is the reading manager when updating using AWS Batch.

This takes all the parameters used by BulkReadingManager, and
in addition:

	Parameters

	project_name (str) – You can select a name for the project for which this reading is being
run. This name has a default value set in your config file. The batch
jobs used in reading will be tagged with this project name, for
accounting purposes.

	
class indra_db.cli.reading.BulkLocalReadingManager(*args, **kwargs)

	This is the reading manager to be used when running reading locally.

This takes all the parameters used by BulkReadingManager, and
in addition:

	Parameters

	
	n_proc (int) – The number of processed to dedicate to reading. Note the some of the
readers (e.g. REACH) do not always obey these restrictions.

	verbose (bool) – If True, more detailed logs will be printed. Default is False.

PreAssembly (indra_db.cli.preassembly)

The Preassembly CLI manages the preassembly pipeline, running deploying
preassembly jobs to Batch.

	
indra_db.cli.preassembly.list_last_updates(db)

	Return a dict of the most recent updates for each statement type.

	
indra_db.cli.preassembly.list_latest_raw_stmts(db)

	Return a dict of the most recent new raw statement for each type.

	
indra_db.cli.preassembly.run_preassembly(mode, project_name)

	Construct a submitter and begin submitting jobs to Batch for preassembly.

This function will determine which statement types need to be updated and
how far back they go, and will create the appropriate
PreassemblySubmitter
instance, and run the jobs with pre-set parameters on statement types that
need updating.

	Parameters

	project_name (str) – This name is used to gag the various AWS resources used for accounting
purposes.

Knowledge Bases (indra_db.cli.knowledgebase)

The INDRA Databases also derives much of its knowledge from external databases
and other resources not extracted from plain text, referred to in this repo as
“knowledge bases”, so as to avoid the ambiguity of “database”. This CLI
handles the updates of those knowledge bases, each of which requires different
handling.

	
class indra_db.cli.knowledgebase.TasManager

	This manager handles retrieval and processing of the TAS dataset.

	
class indra_db.cli.knowledgebase.CBNManager(archive_url=None)

	This manager handles retrieval and processing of CBN network files

	
class indra_db.cli.knowledgebase.HPRDManager

	

	
class indra_db.cli.knowledgebase.SignorManager

	

	
class indra_db.cli.knowledgebase.BiogridManager

	

	
class indra_db.cli.knowledgebase.BelLcManager

	

	
class indra_db.cli.knowledgebase.PathwayCommonsManager(*args, **kwargs)

	

	
class indra_db.cli.knowledgebase.RlimspManager

	

	
class indra_db.cli.knowledgebase.TrrustManager

	

	
class indra_db.cli.knowledgebase.PhosphositeManager

	

	
class indra_db.cli.knowledgebase.CTDManager

	

	
class indra_db.cli.knowledgebase.VirHostNetManager

	

	
class indra_db.cli.knowledgebase.PhosphoElmManager

	

	
class indra_db.cli.knowledgebase.DrugBankManager

	

Static Dumps (indra_db.cli.dump)

This handles the generation of static dumps, including the readonly database
from the principal database.

	
indra_db.cli.dump.list_dumps(started=None, ended=None)

	List all dumps, optionally filtered by their status.

	Parameters

	
	started (Optional[bool]) – If True, find dumps that have started. If False, find dumps that have
NOT been started. If None, do not filter by start status.

	ended (Optional[bool]) – The same as started, but checking whether the dump is ended or not.

	Returns

	Each S3Path object contains the bucket and key prefix information for
a set of dump files, e.g.

	[S3Path(bigmech, indra-db/dumps/2020-07-16/),
	S3Path(bigmech, indra-db/dumps/2020-08-28/),
S3Path(bigmech, indra-db/dumps/2020-09-18/),
S3Path(bigmech, indra-db/dumps/2020-11-12/),
S3Path(bigmech, indra-db/dumps/2020-11-13/)]

	Return type

	list of S3Path objects

	
indra_db.cli.dump.get_latest_dump_s3_path(dumper_name)

	Get the latest version of a dump file by the given name.

Searches dumps that have already been started and gets the full S3
file path for the latest version of the dump of that type (e.g. “sif”,
“belief”, “source_count”, etc.)

	Parameters

	dumper_name (str) – The standardized name for the dumper classes defined in this module,
defined in the name class attribute of the dumper object.
E.g., the standard dumper name “sif” can be obtained from Sif.name.

	Return type

	Union[S3Path, None]

	
exception indra_db.cli.dump.DumpOrderError

	

	
class indra_db.cli.dump.Start(*args, **kwargs)

	Initialize the dump on s3, marking the start datetime of the dump.

	
load(dump_path)

	Load manifest from the Start of the given dump path.

	
classmethod from_date(dump_date: datetime.datetime)

	Select a dump based on the given datetime.

	
class indra_db.cli.dump.PrincipalStats(start=None, date_stamp=None, **kwargs)

	Dump a CSV of extensive counts of content in the principal database.

	
class indra_db.cli.dump.Belief(start=None, date_stamp=None, **kwargs)

	Dump a dict of belief scores keyed by hash

	
class indra_db.cli.dump.Readonly(start=None, date_stamp=None, **kwargs)

	Generate the readonly schema, and dump it using pgdump.

	
class indra_db.cli.dump.SourceCount(start, use_principal=True, **kwargs)

	Dumps a dict of dicts with source counts per source api per statement

	
class indra_db.cli.dump.ResiduePosition(start, use_principal=True, **kwargs)

	Dumps a dict of dicts with residue/position data from Modifications

	
class indra_db.cli.dump.FullPaStmts(start, use_principal=False, **kwargs)

	Dumps all statements found in FastRawPaLink as a pickle

	
class indra_db.cli.dump.FullPaJson(start, use_principal=False, **kwargs)

	Dumps all statements found in FastRawPaLink as jsonl

	
class indra_db.cli.dump.Sif(start, use_principal=False, **kwargs)

	Dumps a pandas dataframe of preassembled statements

	
class indra_db.cli.dump.StatementHashMeshId(start, use_principal=False, **kwargs)

	Dump a mapping from Statement hashes to MeSH terms.

	
class indra_db.cli.dump.End(start=None, date_stamp=None, **kwargs)

	Mark the dump as complete.

	
indra_db.cli.dump.dump(principal_db, readonly_db=None, delete_existing=False, allow_continue=True, load_only=False, dump_only=False)

	Run the suite of dumps in the specified order.

	Parameters

	
	principal_db (indra_db.databases.PrincipalDatabaseManager) – A handle to the principal database.

	readonly_db (indra_db.databases.ReadonlyDatabaseManager) – A handle to the readonly database. Optional when running dump only.

	delete_existing (bool) – If True, clear out the existing readonly build from the principal
database. Otherwise it will be continued. (Default is False)

	allow_continue (bool) – If True, each step will assume that it may already have been done, and
where possible the work will be picked up where it was left off.
(Default is True)

	load_only (bool) – No new dumps will be created, but an existing dump will be used to
populate the given readonly database. (Default is False)

	dump_only (bool) – Do not load a new readonly database, only produce the dump files on s3.
(Default is False)

	
indra_db.cli.dump.DumperChild

	alias of indra_db.cli.dump.End

Database Integrated Reading Tools

Here are defined the procedures for reading content on the database, stashing
the reading outputs, and producing statements from the readings, and inserting
those raw statements into the database.

The Database Readers (indra_db.reading.read_db)

A reader is defined as a python class which implements the machinery needed to
process the text content we store, read it, and extract Statements from the
reading results, storing the readings along the way. The reader must conform
to a standard interface, which then allows readers to be run in a plug-and-play
manner.

This module provides essential tools to run reading using indra’s own
database. This may also be run as a script; for details run:
python read_pmids_db --help

	
exception indra_db.reading.read_db.ReadDBError

	

	
indra_db.reading.read_db.generate_reading_id(tcid, reader_name, reader_version)

	Generate the unique reading ID hash from content ID, reader, and version.

The format of the hash is AABBCCCCCCCCCC, where A is the placeholder
for the reader ID, B is the placeholder for the reader version integer,
and C is reserved for the text content ID (it is loosely assumed we will
not exceed 10^11 pieces of text content).

	Parameters

	
	tcid (str) – The string-ified text content ID.

	reader_name (str) – The name of the reader. It must be one of the readers in
readers.

	reader_version (str) – The version of the reader, which must be in the list of versions for the
given reader_name in
reader_versions.

	
class indra_db.reading.read_db.DatabaseResultData(result, reading_id=None, db_info_id=None, indra_version=None)

	Contains metadata for statements, as well as the statement itself.

This, like ReadingData, is primarily designed for use with the database,
carrying valuable information and methods for such.

	Parameters

	
	result (an indra Result instance) – The result whose extra meta data this object encapsulates.

	reading_id (int or None) – The id number of the entry in the readings table of the database.
None if no such id is available.

	indra_version (str or None) – Override the default indra version, which is the version of indra
currently installed.

	
class indra_db.reading.read_db.DatabaseStatementData(*args, **kwargs)

	
	
static get_cols()

	Get the columns for the tuple returned by make_tuple.

	
make_tuple(batch_id)

	Make a tuple for copying into the database.

	
class indra_db.reading.read_db.DatabaseMeshRefData(result, reading_id=None, db_info_id=None, indra_version=None)

	
	
static get_cols()

	Get the columns for the tuple returned by make_tuple.

	
make_tuple(batch_id)

	Make a tuple for copying into the database.

	
class indra_db.reading.read_db.DatabaseReader(tcids, reader, verbose=True, reading_mode='unread', rslt_mode='all', batch_size=1000, db=None, n_proc=1)

	An class to run readings utilizing the database.

	Parameters

	
	tcids (iterable of ints) – An iterable (set, list, tuple, generator, etc) of integers referring to
the primary keys of text content in the database.

	reader (Reader) – An INDRA Reader object.

	verbose (bool) – Optional, default False - If True, log and print the output of the
commandline reader utilities, if False, don’t.

	reading_mode (str : 'all', 'unread', or 'none') – Optional, default ‘undread’ - If ‘all’, read everything (generally
slow); if ‘unread’, only read things that were unread, (the cache of old
readings may still be used if rslt_mode=’all’ to get everything); if
‘none’, don’t read, and only retrieve existing readings.

	rslt_mode (str : 'all', 'unread', or 'none') – Optional, default ‘all’ - If ‘all’, produce results for all content
for all readers. If the readings were already produced, they will be
retrieved from the database if read_mode is ‘none’ or ‘unread’. If
this option is ‘unread’, only the newly produced readings will be
processed. If ‘none’, no rs will be produced.

	batch_size (int) – Optional, default 1000 - The number of text content entries to be
yielded by the database at a given time.

	db (indra_db.DatabaseManager instance) – Optional, default is None, in which case the primary database provided
by get_db(‘primary’) function is used. Used to interface with a
different database.

	
dump_readings_to_db()

	Put the reading output on the database.

	
dump_readings_to_pickle(pickle_file)

	Dump the reading results into a pickle file.

	
get_readings()

	Get the reading output for the given ids.

	
dump_results_to_db()

	Upload the results to the database.

	
dump_results_to_pickle(pickle_file)

	Dump the results into a pickle file.

	
get_results()

	Convert the reader output into a list of ResultData instances.

	
make_results(reading_data_list, num_proc=1)

	Convert a list of ReadingData instances into ResultData instances.

	
indra_db.reading.read_db.process_content(text_content)

	Get the appropriate content object from the text content.

	
indra_db.reading.read_db.construct_readers(reader_names, **kwargs)

	Construct the Reader objects from the names of the readers.

	
indra_db.reading.read_db.read(db_reader, rslt_mode, reading_pickle, rslts_pickle, upload_readings, upload_rslts)

	Read for a single reader

	
indra_db.reading.read_db.run_reading(readers, tcids, verbose=True, reading_mode='unread', rslt_mode='all', batch_size=1000, reading_pickle=None, stmts_pickle=None, upload_readings=True, upload_stmts=True, db=None)

	Run the reading with the given readers on the given text content ids.

The Database Script for Running on AWS (indra_db.reading.read_db_aws)

This is the script used to run reading on AWS Batch, generally run from an
AWS Lambda function.

This script is intended to be run on an Amazon ECS container, so information
for the job either needs to be provided in environment variables (e.g., the
REACH version and path) or loaded from S3 (e.g., the list of PMIDs).

	
indra_db.reading.read_db_aws.is_trips_datestring(s)

	Indicate whether a string has the form of a TRIPS log dir.

A Class to Manage and Monitor AWS Batch Jobs (indra_db.reading.submitter)

Allow a manager to monitor the Batch jobs to prevent runaway jobs, and smooth
out job runs and submissions.

“This file acts as a script to run large batch jobs on AWS.

The key components are the DbReadingSubmitter class, and the submit_db_reading
function. The function is provided as a shallow wrapper for backwards
compatibility, and may eventually be removed. The preferred method for running
large batches via the ipython, or from a python environment, is the following:

>> sub = DbReadingSubmitter(‘name_for_run’, [‘reach’, ‘sparser’])
>> sub.set_options(prioritize=True)
>> sub.submit_reading(‘file/location/of/ids_to_read.txt’, 0, None, ids_per_job=1000)
>> sub.watch_and_wait(idle_log_timeout=100, kill_on_timeout=True)

Additionally, this file may be run as a script. For details, run

bash$ python submit_reading_pipeline.py –help

In your favorite command line.

Database Integrated Preassembly Tools

The database runs incremental preassembly on the raw statements to generate
the preassembled (PA) Statements. The code to accomplish this task is defined
here, principally in DbPreassembler. This module also
defines proceedures for running these jobs on AWS.

Database Preassembly (indra_db.preassembly.preassemble_db)

This module defines a class that manages preassembly for a given list of
statement types on the local machine.

	
exception indra_db.preassembly.preassemble_db.IndraDBPreassemblyError

	

	
exception indra_db.preassembly.preassemble_db.UserQuit

	

	
class indra_db.preassembly.preassemble_db.DbPreassembler(batch_size=10000, s3_cache=None, print_logs=False, stmt_type=None, yes_all=False, ontology=None)

	Class used to manage the preassembly pipeline

	Parameters

	batch_size (int) – Select the maximum number of statements you wish to be handled at a
time. In general, a larger batch size will somewhat be faster, but
require much more memory.

	
create_corpus(db, continuing=False)

	Initialize the table of preassembled statements.

This method will find the set of unique knowledge represented in the
table of raw statements, and it will populate the table of preassembled
statements (PAStatements/pa_statements), while maintaining links between
the raw statements and their unique (pa) counterparts. Furthermore, the
refinement/support relationships between unique statements will be found
and recorded in the PASupportLinks/pa_support_links table.

For more detail on preassembly, see indra/preassembler/__init__.py

	
supplement_corpus(db, continuing=False)

	Update the table of preassembled statements.

This method will take any new raw statements that have not yet been
incorporated into the preassembled table, and use them to augment the
preassembled table.

The resulting updated table is indistinguishable from the result you
would achieve if you had simply re-run preassembly on _all_ the
raw statements.

	
indra_db.preassembly.preassemble_db.shash(s)

	Get the shallow hash of a statement.

	
indra_db.preassembly.preassemble_db.make_graph(unique_stmts, match_key_maps)

	Create a networkx graph of the statement and their links.

A Class to Manage and Monitor AWS Batch Jobs (indra_db.preassembly.submitter)

Allow a manager to monitor the Batch jobs to prevent runaway jobs, and smooth
out job runs and submissions.

Database Schemas

Here are defined the schemas for the principal and readonly databases, as well
as some useful mixin classes.

Principal Database Schema (indra_db.schemas.principal_schema)

The Principal Schema

The Principal database is the core representation of our data, the ultimate
authority on what we know. It is heavily optimized for the input and
maintenance of our data.

	
class indra_db.schemas.principal_schema.PrincipalSchema(Base)

	The Principal schema class organizes the table constructors.

The tables can be divided into various groups, with a clear order of
creation for many of them.

Core Tables

First are the core tables representing our knowledge:

	text_ref

	text_content

	reading

	db_info

	raw_statements

	raw_unique_links

	pa_statements

	pa_support_links

Statement Attribute Tables

Then there are the tables that represent attributes of statements. The set
of tables is identical for the raw statements:

	raw_activity

	raw_agents

	raw_muts

	raw_mods

and the preassembled statements:

	pa_activity

	pa_agents

	pa_muts

	pa_mods

Curation Table

This table is where we record the curations submitted by ourselves and our
users, which we use to improve our results.

	curations

Ancillary Tables

We also have several tables that we use to keep track of processing
metadata, and some artifacts useful in that processing.

	updates

	source_file

	reading_updates

	preassembly_updates

	xdd_updates

	rejected_statements

	discarded_statements

	
text_ref()

	Represent a piece of text, as per its identifiers.

Each piece of text will be made available in different forms through
different services, most commonly abstracts through pubmed and full text
through pubmed central. However they are from the same paper, which
has various different identifiers, such as pmids, pmcids, and dois.

We do our best to merge the different identifiers and for the most part
each paper has exactly one text ref. Where that is not the case it is
mostly impossible to automatically reconcile the different identifiers
(this often has to do with inconsistent versioning of a paper and mixups
over what is IDed).

Size: medium

Basic Columns

These are the core columns representing the different IDs we use to
represent a paper.

	id integer PRIMARY KEY: The primary key of the TextRef
entry. Elsewhere this is often referred to as a “text ref ID” or
“trid” for short.

	pmid varchar(20): The identifier from pubmed.

	pmcid varchar(20): The identifier from PubMed Central (e.g.
“PMC12345”)

	doi varchar(100): The ideally universal identifier.

	pii varchar(250): The identifier used by Springer.

	url varchar UNIQUE: For sources found exclusively online
(e.g. wikipedia) use their URL.

	manuscript_id varchar(100) UNIQUE: The ID assigned documents
given to PMC author manuscripts.

Metadata Columns

In addition we also track some basic metadata about the entry and
updates to the data in the table.

	create_date timestamp without time zone: The date the record
was added.

	last_updated timestamp without time zone: The most recent
time the record was edited.

	pub_year integer: The year the article was published, based
on the first report we find (in order of PubMed, PMC, then PMC
Manuscripts).

Constraints

Postgres is extremely efficient at detecting conflicts, and we use this
to help ensure our entries do not have any duplicates.

	pmid-doi: UNIQUE(pmid, doi)

	pmid-pmcid: UNIQUE(pmid, pmcid)

	pmcid-doi: UNIQUE(pmcid, doi)

Lookup Columns

Some columns are hard to look up when they are in their native string
format, so they are processed and broken down into integer parts, as
far as possible.

	pmid_num integer: the int-ified pmid, faster for lookup.

	pmcid_num integer: the int-portion of the PMCID, so
“PMC12345” would here be 12345.

	pmcid_version integer: although rarely used, occasionally a
PMC ID will have a version, indicated by a dot, e.g. PMC12345.3, in
which case the “3” would be stored in this column.

	doi_ns integer: The DOI system works by assigning
organizations (such as a journal) namespace IDs, and that organization
is then responsible for maintaining a unique ID system internally.
These namespaces are always numbers, and are stored here as such.

	doi_id varchar: The custom ID given by the publishing
organization.

	
mesh_ref_annotations()

	Represent the MeSH annotations of papers provided by PubMed.

Each abstract/entry in PubMed is accompanied by human-curated
MeSH IDs indicating the topics of the paper. Each paper will have many
IDs in general, so a separate table is used, liked to the
text_ref table by an un-constrained PMID. This make
insertion of the data easier because the custom TRIDs need not be
retrieved to dump the mesh refs.

Size: large

Columns

	id integer PRIMARY KEY: The primary database-assigned ID of
the row.

	pmid_num integer NOT NULL: The int-ified pmid that is used
to link entries in this table with those in the
text_ref table.

	mesh_num `integer NOT NULL: The intified MeSH ID (with the
prefix removed). The is_concept column indicates whether the
prefix was D (False) or C (True).

	qual_num integer: The qualifier number that is sometimes
included with the annotation (Prefix Q).

	major_topic boolean DEFAULT false: The major topic flag
indicates whether the ID describes a primary purpose of the paper.

	is_concept boolean DEFAUL false: Indicate whether the prefix
was C (true) or D (false).

Constraints

Postgres is extremely efficient at detecting conflicts, and we use this
to help ensure our entries do not have any duplicates.

	mesh-uniqueness: UNIQUE(pmid_num, mesh_num, qual_num,
is_concept)

	
mti_ref_annotaions_test()

	Represent the MeSH annotations of abstracts as inferred by MTI.

MTI is a machine learned model that attempts to predict MeSH annotations
on new un-annotated abstracts after training on the existing
annotations.

Size: medium

Columns

	id integer PRIMARY KEY: The primary database-assigned ID of
the row.

	pmid_num integer NOT NULL: The int-ified pmid that is used
to link entries in this table with those in the
text_ref table.

	mesh_num `integer NOT NULL: The intified MeSH ID (with the
prefix removed). The is_concept column indicates whether the
prefix was D (False) or C (True).

	qual_num integer: The qualifier number that is sometimes
included with the annotation (Prefix Q).

	major_topic boolean DEFAULT false: The major topic flag
indicates whether the ID describes a primary purpose of the paper.

	is_concept boolean DEFAUL false: Indicate whether the prefix
was C (true) or D (false).

Constraints

Postgres is extremely efficient at detecting conflicts, and we use this
to help ensure our entries do not have any duplicates.

	mesh-uniqueness: UNIQUE(pmid_num, mesh_num, qual_num,
is_concept)

	
text_content()

	Represent the content of a text retrieved from a particular source.

For each paper as a logical entity, there are many places where you can
acquire the actual article or parts of it. For example you can get an
abstract from PubMed for most content, and for a minority subset you can
get full text from PubMed Central, either their Open-Access corpus or
their author’s Manuscripts.

Both the text itself and the metadata for the source of the text are
represented in this table.

Size: large

Basic Columns

	id integer PRIMARY KEY: The auto-generated primary key of
the table. These are elsewhere called Text Content IDs, or TCIDs.

	text_ref_id integer NOT NULL: A foreign-key constrained
reference to the appropriate entry in the text_ref
table.

	source varchar(250) NOT NULL: The name of the source, e.g.
“pubmed” or “pmc_oa”. The list of content names can be found in the
class attributes in content managers.

	format varchar(250) NOT NULL: The file format of the
content, e.g. “XML” or “TEXT”.

	text_type varchar(250) NOT NULL: The type of the text, e.g.
“abstract” of “fulltext”.

	preprint boolean: Indicate whether the content is from
a preprint.

	license [varchar]: Record the license that applies to the
content.

	content bytea: The raw compressed bytes of the content.

Metadata Columns

	insert_data timestamp without time zone: The date the record
was added.

	last_updated timestamp without time zone: The most recent
time the record was edited.

Constraints

Postgres is extremely efficient at detecting conflicts, and we use this
to help ensure our entries do not have any duplicates.

	content-uniqueness: UNIQUE(text_ref_id, source, format,
text_type)

	
reading()

	Represent a reading of a piece of text.

We have multiple readers and of course many thousands of pieces of text
content. Each entry in this table applies to a given reader applied to
a given pieces of content.

As such, the primary ID is a hash constructed from the text content ID
prepended with integers that are assigned to each reader-reader version
pair. The function
generate_reading_id
implements the particular process used. The reader numbers are assigned
in the readers global, and the
reader version number is the index of the version listed for the given
reader in the reader_versions
dictionary in the same module.

Size: very large

Basic Columns

	id bigint PRIMARY KEY: A hash ID constructed from a reader
number, reader version number, and the text content ID of the content
that was read.

	text_content_id integer NOT NULL: A foreign-key constrained
reference to the appropriate entry in the text_content table.

	batch_id integer NOT NULL: A simple random integer (not
unique) that is assigned each batch of inserted readings. It is used
in the moments after the insert to easily retrieve the content that
was just added, potentially plus some extra.

	reader varchar(20) NOT NULL: The name of the reader, e.g.
“REACH” or “SPARSER”.

	reader_version varchar(20) NOT NULL: The version of the
reader, which may be any arbitrary string in principle. This allows
each reader to define its own versioning scheme.

	format varchar(20) NOT NULL: The file format of the
reading result, e.g. “XML” or “JSON”.

	bytes bytea: The raw compressed bytes of the reading result.

Metadata Columns

	create_date timestamp without time zone: The date the record
was added.

	last_updated timestamp without time zone: The most recent
time the record was edited.

Constraints

Postgres is extremely efficient at detecting conflicts, and we use this
to help ensure our entries do not have any duplicates.

	reading-uniqeness: UNIQUE(text_content_id, reader,
reader_version)

	
db_info()

	Represent the provenance and metadata for an external knowledge base.

INDRA DB takes content not just from our own readings but also merges
that with many pre-existing knowledge bases, many of them human
curated. These knowledge bases are defined and managed by classes
contained in knowledgebase_manager.

No real data is contained in this column, simply records of which
knowledge bases have been added, updated, and when.

Size: very small

Basic Columns

	id integer PRIMARY KEY: A database-assigned integer unique
ID for each database entry. These are elsewhere referred to as
db_info_ids or dbids.

	db_name varchar NOT NULL: A short lowercase string that is
used internally to identify the knowledge base, e.g. “pc” for Pathway
Commons.

	db_full_name varchar NOT NULL: The full name of the
knowledge base, neatly formatted, e.g. “Pathway Commons”.

	source_api varchar NOT NULL: The indra source API that was
used to extract Statements from the knowledge base, e.g. “biopax”.

Metadata Columns

	create_date timestamp without time zone: The date the record
was added.

	last_updated timestamp without time zone: The most recent
time the record was edited.

	
raw_statements()

	Represent Statements exactly as extracted by their source apis.

INDRA Defines several source APIs for different file types from which we
can extract INDRA Statements. The goal of these APIs is primarily to
accurately convey the contents of the files, and minimal fixes are made
at this stage (e.g. grounding is saved for preassembly).

Thus this table contains statements that are considered “messy” in two
key ways:

	they have a lot of repetition of information, and

	they have whatever grounding the original source gave them.

However these Statements also have the Evidence object JSON contained in
their json column, and this Evidence information is NOT copied
into the pa_statements table, which allows for
a flexible incremental updates. A “lateral join” on this table can be
used to get the first N evidence associated with each PA Statement.

Size: very large

Basic Columns

	id integer PRIMARY KEY: A database-assigned integer unique
ID for each database entry. These are elsewhere referred to as
“Statement ID”s, or “sid”s.

	uuid varchar UNIQUE NOT NULL: A UUID generated when a
Statement object is first created. This can be used for tracking
particular objects through the code.

	batch_id integer NOT NULL: A simple random integer (not
unique) that is assigned each batch of inserted Statements. It is used
in the moments after the insert to easily retrieve the content that
was just added, potentially plus some extra.

	mk_hash bigint NOT NULL: A hash of the matches_key of a
Statement. This should be unique for any statement containing the same
information.

	text_hash bigint: A hash of a the evidence text, used to
detect exact duplicate Statements (same information from the same
exact source, right down to the text) that sometimes occur due to bugs

	source_hash bigint NOT NULL: A hash of the source
information.

	db_info_id integer: A foreign key into the
db_info table, for those statements that come from
knowledge bases.

	reading_id bigint: A foreign key into the
reading table, for those statements that come from a
reading.

	type varchar(100) NOT NULL: The type of the Statement, e.g.
“Phosphorylation”.

	indra_version varchar(100) NOT NULL: The version of INDRA
that was used to generate this Statement, specifically as returned by
indra.util.get_version.get_version().

	json bytea NOT NULL: The bytes of the Statement JSON
(including exactly one Evidence JSON)

Metadata Columns

	create_date timestamp without time zone: The date the
Statement was added.

Constraints

Postgres is extremely efficient at detecting conflicts, and we use this
to help ensure our entries do not have any duplicates.

	reading_raw_statement_uniqueness: UNIQUE(mk_hash, text_hash,
reading_id)

	db_info_raw_statement_uniqueness: UNIQUE(mk_hash, source_hash,
db_info_id)

	
raw_activity()

	Represent the activity of a raw statement (an ActiveForm).

	
raw_agents()

	Represent an identifier for an agent of a raw statement.

	
raw_mods()

	Represent a modification of an agent of a raw statement.

	
raw_muts()

	Represent a mutation of an agent of a raw statement.

	
raw_unique_links()

	Represent links between raw statements and preassembled statements.

Each preassembled statement is constructed from multiple raw statements,
in general. This maps each pa_statement to the
raw statements that were merged to form it. It
is through this table that evidence can be gathered for pa_statements.

The astute reader may note that the
raw_statements-to
-pa_statement relationship is many-to-one, which
can be represented simply using a foreign-key in the “many” table, in
this case raw_statements. This is not done
because the pa_statement does not, in general,
exist when the raw_statement is added to the
database.

Constructed as it is, these links can be copied in bulk during
preassembly, as opposed to having to modify as many as a million entries
with a newly created foreign-key map.

Size: large

Basic Columns

	id integer PRIMARY KEY: A database-assigned integer unique
ID for each database entry.

	raw_stmt_id integer NOT NULL REFERENCES raw_statements(id):
The Raw Statement ID foreign key to the raw_statements table.

	pa_stmt_mk_hash bigint NOT NULL REFERENCES
pa_statements(mk_hash): The PA Statement matches-key hash foreign
key to the pa_statements table.

Constraints

Postgres is extremely efficient at detecting conflicts, and we use this
to help ensure our entries do not have any duplicates.

	stmt-link-uniqueness: UNIQUE(raw_stmt_id, pa_stmt_mk_hash)

	
pa_statements()

	Represent preassembled statements.

Preassmebled Statements are generated from Raw Statements using INDRA’s
preassembly tools. Specifically:

	agents are grounded,

	agent groundings are disambiguated (using adeft),

	sites are fixed (using protmapper),

	and finally, repeated information is consolidated, for example
Phosphorylation(MEK(), ERK()) is represented only once in this
corpus, with links to the many instances that information was
extracted, which are stored in the raw_statements table.

Each entry is linked back to the (in general multiple) raw statements
it was derived from in the raw_unique_links
table.

Size: medium large

Basic Columns

	mk_hash bigint PRIMARY KEY: a hash of the statement matches
key, which is unique for the _knowledge_ of the Statement.

	matches_key varchar NOT NULL: The matches-key that was hashed.

	uuid varchar UNIQUE NOT NULL: A UUID generated when a
Statement object is first created. This can be used for tracking
particular objects through the code. The UUID is distinct from any
of the raw statement UUIDs that compose this Statement.

	type varchar(100) NOT NULL: The type of the Statement, e.g.
“Phosphorylation”.

	indra_version varchar(100) NOT NULL: The version of INDRA
that was used to generate this Statement, specifically as returned by
indra.util.get_version.get_version().

	json bytea NOT NULL: The bytes of the Statement JSON
(including exactly one Evidence JSON)

Metadata Columns

	create_date timestamp without time zone: The date the
Statement was added.

	
pa_support_links()

	Represent the links of support calculated during preassembly.

In INDRA, we look for cases where more specific Statements may lend
support to more general Statements, and potentially vice versa, to
better gauge whether an extraction is reliable.

Size: large

Basic Columns

	id integer PRIMARY KEY: A database-assigned integer unique
ID for each database entry.

	supporting_mk_hash bigint NOT NULL REFERENCES
pa_statements(mk_hash): A foreign key to the PA Statement that is
giving the support (that is, the more specific Statement).

	supported_mk_hash bigint NOT NULL REFERENCES
pa_statements(mk_hash): A foreign key to the PA Statement that is
given the support (that is, the more generic Statement).

Constraints

Postgres is extremely efficient at detecting conflicts, and we use this
to help ensure our entries do not have any duplicates.

	pa_support_links_link_uniqueness: UNIQUE(supporting_mk_hash,
supported_mk_hash)

	
pa_activity()

	Represent the activity of a preassembled Statement.

	
pa_agents()

	Represent an identifier for an agent of a preassembled statement.

	
pa_mods()

	Represent a modification of an agent of a preassembled statement.

	
pa_muts()

	Represent a mutation of an agent of a preassembled statement.

	
curations()

	Represent the curations of our content.

At various points in our APIs and UIs it is possible to curate the
content we have extracted, recording whether it is an accurate
extraction from the source text, and if not the reason why.

Size: small

Basic Columns

	id integer PRIMARY KEY: A database-assigned integer unique
ID for each database entry.

	pa_hash bigint REFERENCES pa_statements(mk_hash): A reference
into the pa_statements table to the the
pa statement whose evidence was curated.

	source_hash bigint: A hash that represents the source of this
Statement (e.g. reader and piece of content).

	tag varchar: A text code indicating the type of error curated.
The domain of these strings is regulated in code elsewhere.

	text varchar: A free-form text description by the curator of
what they think went wrong (or right).

	curator varchar NOT NULL: The identity of the curator. This
has elsewhere been standardized to be their email.

	auth_id varchar: [deprecated]

	source varchar: A string indicating where this curation
originated, e.g. “DB REST API” for the INDRA Database REST service.

	ip inet: The IP address from which the curation was submitted.

	date timestamp without time zone: The date the curation was
added.

	pa_json jsonb: the preassembled Statement JSON that was
curated.

	ev_json jsonb: the Evidence JSON that was curated (including
the text).

	
source_file()

	Record the pubmed source file that was processed.

	
updates()

	Record when text ref and content updates were performed.

	
reading_updates()

	Record runs of the readers on the content we have found.

	
xdd_updates()

	Record the times we process dumps from xDD.

	
rejected_statements()

	Represent raw statements that were rejected.

	
discarded_statements()

	Record the reasons for which some statements were discarded.

	
preassembly_updates()

	Record updates of the preassembled corpus.

Readonly Database Schema (indra_db.schemas.readonly_schema)

Defines the get_schema function for the readonly database, which is used by
external services to access the Statement knowledge we acquire.

	
class indra_db.schemas.readonly_schema.ReadonlySchema(Base)

	Schema for the Readonly database.

We use a readonly database to allow fast and efficient load of data,
and to add a layer of separation between the processes of updating
the content of the database and accessing the content of the
database. However, it is not practical to have the views created
through sqlalchemy: instead they are generated and updated manually
(or by other non-sqlalchemy scripts).

Before building these tables, the belief table must already
have been loaded into the readonly database.

The following views must be built in this specific order (temp):

	raw_stmt_src

	fast_raw_pa_link

	pa_agent_counts

	(pa_stmt_src)

	evidence_counts

	reading_ref_link

	(pa_ref_link)

	(mesh_terms)

	(mesh_concepts)

	(hash_pmid_counts)

	mesh_term_ref_counts

	mesh_concept_ref_counts

	raw_stmt_mesh_terms

	raw_stmt_mesh_concepts

	(pa_meta)

	source_meta

	text_meta

	name_meta

	other_meta

	mesh_term_meta

	mesh_concept_meta

	agent_interaction

Note that the order of views below is determined not by the above
order but by constraints imposed by use-case.

Meta Tables

Any table that has “meta” in the name is intended as a primary lookup table.
This means it will have both the data indicated in the name of the table,
such at (agent) “text”, (agent) “name”, or “source”, but also a collection
of columns with metadata essential for sorting and grouping of hashes:

	Sorting:

	belief

	ev_count

	agent_count

	Grouping:

	type_num

	activity

	is_active

Temporary Tables

There are some intermediate results that it is worthwhile to calculate and
store for future table construction. Sometimes these were once permanent
tables but are no longer used for their own sake, and it was simply simpler
to delete them after their derivatives were completed. In other cases the
temporary tables are more principled: created because many future tables
draw on them and using a “with” clause for each one would be impractical.

Whatever the reason, deleting the temporary tables greatly reduces the
size of the readonly database. Such tables are marked in with “(temp)” at
the beginning of their doc string.

	
belief()

	The belief of preassembled statements, keyed by hash.

Columns

	mk_hash bigint

	belief real

Indices

	mk_hash

	
evidence_counts()

	The evidence counts of pa statements, keyed by hash.

Columns

	mk_hash bigint

	ev_count integer

Indices

	mk_hash

	
reading_ref_link()

	The source metadata for readings, keyed by reading ID.

Columns

	trid integer

	pmid varchar(20)

	pmid_num integer

	pmcid varchar(20)

	pmcid_num integer

	pmcid_version integer

	doi varchar(100)

	doi_ns integer

	doi_id varchar

	pii varchar(250)

	url varchar(250)

	manuscript_id varchar(100)

	tcid integer

	source varchar(250)

	rid integer

	reader varchar(20)

Indices

	rid

	pmid

	pmid_num

	pmcid

	pmcid_num

	doi

	doi_ns

	doi_id

	manuscript_id

	tcid

	trid

	
fast_raw_pa_link()

	Join of PA JSONs and Raw JSONs for faster lookup.

Columns

	id integer

	raw_json bytea

	reading_id bigint

	db_info_id integer

	mk_hash bigint

	pa_json bytea

	type_num smallint

	src varchar

Indices

	mk_hash

	reading_id

	db_info_id

	src

	
pa_agent_counts()

	The number of agents for each Statement, keyed by hash.

Columns

	mk_hash bigint

	agent_count integer

Indices

	mk_hash

	
raw_stmt_src()

	The source (e.g. reach, pc) of each raw statement, keyed by SID.

Columns

	sid integer

	src varchar

Indices

	sid

	src

	
pa_stmt_src()

	(temp) The number of evidence from each source for a PA Statement.

This table is constructed by forming a column for every source short
name present in the raw_stmt_src.

Columns

	mk_hash bigint

	…one column for each source… integer

Indices

	mk_hash

	
pa_ref_link()

	(temp) A quick-lookup from mk_hash to basic text ref data.

Columns

	mk_hash bigint

	trid integer

	pmid_num varchar

	pmcid_num varchar

	source varchar

	reader varchar

Indices

	mk_hash

	trid

	pmid_num

	
mesh_terms()

	(temp) All mesh annotations with D prefix, keyed by PMID int.

Columns

	mesh_num integer

	pmid_num integer

Indices

	pmid_num

	
mesh_concepts()

	(temp) All mesh annotations with C prefix, keyed by PMID int.

Columns

	mesh_num integer

	pmid_num integer

Indices

	pmid_num

	
hash_pmid_counts()

	(temp) The number of pmids for each PA Statement, keyed by hash.

Columns

	mk_hash bigint

	pmid_count integer

Indices

	mk_hash

	
mesh_term_ref_counts()

	The D-type mesh IDs with pmid and ref counts, keyed by hash and mesh.

Columns

	mk_hash bigint

	mesh_num integer

	ref_count integer

	pmid_count integer

Indices

	mesh_num

	mk_hash

	
mesh_concept_ref_counts()

	The C-type mesh IDs with pmid and ref counts, keyed by hash and mesh.

Columns

	mk_hash bigint

	mesh_num integer

	ref_count integer

	pmid_count integer

Indices

	mesh_num

	mk_hash

	
raw_stmt_mesh_terms()

	The D-type mesh number raw statement ID mapping.

Columns

	sid integer

	mesh_num integer

Indices

	sid

	mesh_num

	
raw_stmt_mesh_concepts()

	The C-type mesh number raw statement ID mapping.

Columns

	sid integer

	mesh_num integer

Indices

	sid

	mesh_num

	
pa_meta()

	(temp) The metadata most valuable for querying PA Statements.

This table is used to generate the more scope-limited
name_meta, text_meta, and
other_meta. The reason is that NAME and TEXT (in
particular) agent groundings are vastly overrepresented.

Columns

	ag_id integer

	ag_num integer

	db_name varchar

	db_id varchar

	role_num smallint

	type_num smallint

	mk_hash bigint

	ev_count integer

	belief real

	activity varchar

	is_active boolean

	agent_count integer

	is_complex_dup boolean

Indices

	db_name

	mk_hash

	
source_meta()

	All the source-related metadata condensed using JSONB, keyed by hash.

Columns

	mk_hash bigint

	ev_count integer

	belief real

	num_srcs integer

	src_json json

	only_src varchar

	has_rd boolean

	has_db boolean

	type_num smallint

	activity varchar

	is_active boolean

	agent_count integer

Indices

	mk_hash

	only_src

	activity

	type_num

	num_srcs

	
text_meta()

	The metadata most valuable for querying PA Statements by agent TEXT.

This table is generated from pa_meta, because TEXT
is extremely overrepresented among agent groundings. Removing these and
NAMEs from the “OTHER” efficiently narrows the search very rapidly, and
for the larger sets of NAME and TEXT removes an index-search.

Columns

	ag_id integer

	ag_num integer

	db_id varchar

	role_num smallint

	type_num smallint

	mk_hash bigint

	ev_count integer

	belief real

	activity varchar

	is_active boolean

	agent_count integer

	is_complex_dup boolean

Indices

	mk_hash

	db_id

	type_num

	activity

	
name_meta()

	The metadata most valuable for querying PA Statements by agent NAME.

This table is generated from pa_meta, because NAME
is overrepresented among agent groundings. Removing these and NAMEs from
the “OTHER” efficiently narrows the search very rapidly, and for the
larger sets of NAME and TEXT removes an index-search.

Columns

	ag_id integer

	ag_num integer

	db_id varchar

	role_num smallint

	type_num smallint

	mk_hash bigint

	ev_count integer

	belief real

	activity varchar

	is_active boolean

	agent_count integer

	is_complex_dup boolean

Indices

	mk_hash

	db_id

	type_num

	activity

	
other_meta()

	The metadata most valuable for querying PA Statements.

This table is a copy of pa_meta with rows with agent
groundings besides NAME and TEXT removed.

Columns

	ag_id integer

	ag_num integer

	db_name varchar

	db_id varchar

	role_num smallint

	type_num smallint

	mk_hash bigint

	ev_count integer

	belief real

	activity varchar

	is_active boolean

	agent_count integer

	is_complex_dup boolean

Indices

	mk_hash

	db_name

	db_id

	type_num

	activity

	
mesh_term_meta()

	A lookup for hashes by D-type mesh IDs.

Columns

	mk_hash bigint

	mesh_num integer

	tr_count integer

	ev_count integer

	belief real

	type_num smallint

	activity varchar

	is_active boolean

	agent_count integer

Indices

	mk_hash

	type_num

	activity

	
mesh_concept_meta()

	A lookup for hashes by C-type mesh IDs.

Columns

	mk_hash bigint

	mesh_num integer

	tr_count integer

	ev_count integer

	belief real

	type_num smallint

	activity varchar

	is_active boolean

	agent_count integer

Indices

	mk_hash

	type_num

	activity

	
agent_interactions()

	Agent and type data in simple JSONs for rapid lookup, keyed by hash.

This table is used for retrieving interactions, agent pairs, and
relations (any kind of return that is more generic than full
Statements).

Columns

	mk_hash bigint

	ev_count integer

	belief real

	type_num smallint

	activity varchar

	is_active boolean

	agent_count integer

	agent_json jsonb

	src_json jsonb

	is_complex_dup boolean

Indices

	mk_hash

	agent_json

	type_num

Class Mix-ins (indra_db.schemas.mixins)

This defines class mixins that are used to add general features to SQLAlchemy
table objects via multiple inheritance.

	
exception indra_db.schemas.mixins.DbIndexError

	

	
class indra_db.schemas.mixins.IndraDBTableMetaClass(*args, **kwargs)

	This serves as a meta class for all tables, allowing str to be useful.

In particular, this makes it so that the string gives a representation of
the SQL table, including columns.

	
class indra_db.schemas.mixins.IndraDBRefTable

	Define an API and methods for a table of text references.

	
classmethod pmid_in(pmid_list, filter_ids=False)

	Get sqlalchemy clauses for entries IN a list of pmids.

	
classmethod pmid_notin(pmid_list, filter_ids=False)

	Get sqlalchemy clauses for entries NOT IN a list of pmids.

	
classmethod pmcid_in(pmcid_list, filter_ids=False)

	Get the sqlalchemy clauses for entries IN a list of pmcids.

	
classmethod pmcid_notin(pmcid_list, filter_ids=False)

	Get the sqlalchemy clause for entries NOT IN a list of pmcids.

	
classmethod doi_in(doi_list, filter_ids=False)

	Get clause for looking up entities IN a list of dois.

	
classmethod doi_notin(doi_list, filter_ids=False)

	Get clause for looking up entities NOT IN a list of dois.

	
classmethod has_ref(id_type, id_list, filter_ids=False)

	Get clause for entries IN the given ID list.

	
classmethod not_has_ref(id_type, id_list, filter_ids=False)

	Get clause for entries NOT IN the given ID list

	
get_ref_dict()

	Return the refs as a dictionary keyed by type.

	
class indra_db.schemas.mixins.Schema(Base)

	General class for schemas

Indexes (indra_db.schemas.indexes)

This defines the classes needed to create and maintain indices in the database,
the other part of the infrastructure of which is included in the IndraDBTable
class mixin definition.

Utilities

Here live the more mundane and backend utilities used throughout other modules
of the codebase, and potentially elsewhere, although they are not intended for
external use in general. Several more-or-less bespoke scripts are also stored
here.

Database Session Constructors (indra_db.util.constructors)

Constructors to get interfaces to the different databases, selecting among
the various physical instances defined in the config file.

	
indra_db.util.constructors.get_db(db_label, protected=False)

	Get a db instance base on it’s name in the config or env.

If the label does not exist or the database labeled can’t be reached, None
is returned.

	
indra_db.util.constructors.get_primary_db(force_new=False)

	Get a DatabaseManager instance for the primary database host.

The primary database host is defined in the defaults.txt file, or in a file
given by the environment variable DEFAULTS_FILE. Alternatively, it may be
defined by the INDRADBPRIMARY environment variable. If none of the above
are specified, this function will raise an exception.

Note: by default, calling this function twice will return the same
DatabaseManager instance. In other words:

db1 = get_primary_db()
db2 = get_primary_db()
db1 is db2

This means also that, for example db1.select_one(db2.TextRef) will work,
in the above context.

It is still recommended that when creating a script or function, or other
general application, you should not rely on this feature to get your access
to the database, as it can make substituting a different database host both
complicated and messy. Rather, a database instance should be explicitly
passed between different users as is done in get_statements_by_gene_role_type
function’s call to get_statements in indra.db.query_db_stmts.

	Parameters

	force_new (bool) – If true, a new instance will be created and returned, regardless of
whether there is an existing instance or not. Default is False, so that
if this function has been called before within the global scope, a the
instance that was first created will be returned.

	Returns

	primary_db – An instance of the database manager that is attached to the primary
database.

	Return type

	DatabaseManager

	
indra_db.util.constructors.get_ro(ro_label, protected=True)

	Get a readonly database instance, based on its name.

If the label does not exist or the database labeled can’t be reached, None
is returned.

	
indra_db.util.constructors.get_ro_host(ro_label)

	Get the host of the current readonly database.

Scripts to Get Content (indra_db.util.content_scripts)

General scripts for getting content by various IDs.

	
indra_db.util.content_scripts.get_stmts_with_agent_text_like(pattern, filter_genes=False, db=None)

	Get statement ids with agent with rawtext matching pattern

	Parameters

	
	pattern (str) – a pattern understood by sqlalchemy’s like operator.
For example ‘__’ for two letter agents

	filter_genes (Optional[bool]) – if True, only returns map for agent texts for which there is at least
one HGNC grounding in the database. Default: False

	db (Optional[DatabaseManager]) – User has the option to pass in a database manager. If None
the primary database is used. Default: None

	Returns

	dict mapping agent texts to statement ids. agent text are those
matching the input pattern. Each agent text maps to the list of
statement ids for statements containing an agent with that TEXT
in its db_refs

	Return type

	dict

	
indra_db.util.content_scripts.get_text_content_from_stmt_ids(stmt_ids, db=None)

	Get text content for statements from a list of ids

Gets the fulltext if it is available, even if the statement came from an
abstract.

	Parameters

	
	stmt_ids (list of str) –

	db (Optional[DatabaseManager]) – User has the option to pass in a database manager. If None
the primary database is used. Default: None

	Returns

	ref_dict – dict mapping statement ids to identifiers for pieces of content.
These identifiers take the form `<text_ref_id>/<source>/<text_type>’.
No entries exist for statements with no associated text content
(these typically come from databases)

	Return type

	dict

	text_dict: dict
	dict mapping content identifiers used as values in the ref_dict
to best available text content. The order of preference is
fulltext xml > plaintext abstract > title

Distilling Raw Statements (indra_db.util.distill_statements)

Do some pre-pre-assembly cleansing of the raw Statements to account for various
kinds of duplicity that are artifacts of our content collection and reading
pipelines rather than representing actually duplicated knowledge in the
literature.

	
indra_db.util.distill_statements.delete_raw_statements_by_id(db, raw_sids, sync_session=False, remove='all')

	Delete raw statements, their agents, and their raw-unique links.

It is best to batch over this function with sets of 1000 or so ids. Setting
sync_session to False will result in a much faster resolution, but you may
find some ORM objects have not been updated.

	
indra_db.util.distill_statements.distill_stmts(db, get_full_stmts=False, clauses=None, handle_duplicates='error')

	Get a corpus of statements from clauses and filters duplicate evidence.

	Parameters

	
	db (DatabaseManager) – A database manager instance to access the database.

	get_full_stmts (bool) – By default (False), only Statement ids (the primary index of Statements
on the database) are returned. However, if set to True, serialized
INDRA Statements will be returned. Note that this will in general be
VERY large in memory, and therefore should be used with caution.

	clauses (None or list of sqlalchemy clauses) – By default None. Specify sqlalchemy clauses to reduce the scope of
statements, e.g. clauses=[db.Statements.type == ‘Phosphorylation’] or
clauses=[db.Statements.uuid.in_([<uuids>])].

	handle_duplicates ('error', 'delete', or a string file path) – Choose whether you want to delete the statements that are found to be
duplicates (‘delete’), or write a pickle file with their ids (at the
string file path) for later handling, or raise an exception (‘error’).
The default behavior is ‘error’.

	Returns

	stmt_ret – A set of either statement ids or serialized statements, depending on
get_full_stmts.

	Return type

	set

	
indra_db.util.distill_statements.get_filtered_db_stmts(db, get_full_stmts=False, clauses=None)

	Get the set of statements/ids from databases minus exact duplicates.

	
indra_db.util.distill_statements.get_filtered_rdg_stmts(stmt_nd, get_full_stmts, linked_sids=None)

	Get the set of statements/ids from readings minus exact duplicates.

	
indra_db.util.distill_statements.get_reading_stmt_dict(db, clauses=None, get_full_stmts=True)

	Get a nested dict of statements, keyed by ref, content, and reading.

Script to Create a SIF Dump (indra_db.util.dump_sif)

Create an interactome from metadata in the database and dump the results as a
sif file.

	
indra_db.util.dump_sif.dump_sif(src_count_file, res_pos_file, belief_file, df_file=None, db_res_file=None, csv_file=None, reload=True, reconvert=True, ro=None, normalize_names: bool = True)

	Build and dump a sif dataframe of PA statements with grounded agents

	Parameters

	
	src_count_file (Union[str, S3Path]) – A location to load the source count dict from. Can be local file
path, an s3 url string or an S3Path instance.

	res_pos_file (Union[str, S3Path]) – A location to load the residue-postion dict from. Can be local file
path, an s3 url string or an S3Path instance.

	belief_file (Union[str, S3Path]) – A location to load the belief dict from. Can be local file path,
an s3 url string or an S3Path instance.

	df_file (Optional[Union[str, S3Path]]) – If provided, dump the sif to this location. Can be local file path,
an s3 url string or an S3Path instance.

	db_res_file (Optional[Union[str, S3Path]]) – If provided, save the db content to this location. Can be local file
path, an s3 url string or an S3Path instance.

	csv_file (Optional[str, S3Path]) – If provided, calculate dataframe statistics and save to local file
or s3. Can be local file path, an s3 url string or an S3Path instance.

	reconvert (bool) – Whether to generate a new DataFrame from the database content or
to load and return a DataFrame from df_file. If False, df_file
must be given. Default: True.

	reload (bool) – If True, load new content from the database and make a new
dataframe. If False, content can be loaded from provided files.
Default: True.

	ro (Optional[PrincipalDatabaseManager]) – Provide a DatabaseManager to load database content from. If not
provided, get_ro(‘primary’) will be used.

	normalize_names – If True, detect and try to merge name duplicates (same entity with
different names, e.g. Loratadin vs loratadin). Default: False

	
indra_db.util.dump_sif.get_source_counts(pkl_filename=None, ro=None)

	Returns a dict of dicts with evidence count per source, per statement

The dictionary is at the top level keyed by statement hash and each
entry contains a dictionary keyed by the source that support the
statement where the entries are the evidence count for that source.

	
indra_db.util.dump_sif.load_db_content(ns_list, pkl_filename=None, ro=None, reload=False)

	Get preassembled stmt metadata from the DB for export.

Queries the NameMeta, TextMeta, and OtherMeta tables as needed to get
agent/stmt metadata for agents from the given namespaces.

	Parameters

	
	ns_list (list of str) – List of agent namespaces to include in the metadata query.

	pkl_filename (str) – Name of pickle file to save to (if reloading) or load from (if not
reloading). If an S3 path is given (i.e., pkl_filename starts with
s3:), the file is loaded to/saved from S3. If not given,
automatically reloads the content (overriding reload).

	ro (ReadonlyDatabaseManager) – Readonly database to load the content from. If not given, calls
get_ro(‘primary’) to get the primary readonly DB.

	reload (bool) – Whether to re-query the database for content or to load the content
from from pkl_filename. Note that even if reload is False,
if no pkl_filename is given, data will be reloaded anyway.

	Returns

	Set of tuples containing statement information organized
by agent. Tuples contain (stmt_hash, agent_ns, agent_id, agent_num,
evidence_count, stmt_type).

	Return type

	set of tuples

	
indra_db.util.dump_sif.load_res_pos(ro=None)

	Return residue/position data keyed by hash

	
indra_db.util.dump_sif.make_dataframe(reconvert, db_content, res_pos_dict, src_count_dict, belief_dict, pkl_filename=None, normalize_names: bool = False)

	Make a pickled DataFrame of the db content, one row per stmt.

	Parameters

	
	reconvert (bool) – Whether to generate a new DataFrame from the database content or
to load and return a DataFrame from the given pickle file. If False,
pkl_filename must be given.

	db_content (set of tuples) – Set of tuples of agent/stmt data as returned by load_db_content.

	res_pos_dict (Dict[str, Dict[str, str]]) – Dict containing residue and position keyed by hash.

	src_count_dict (Dict[str, Dict[str, int]]) – Dict of dicts containing source counts per source api keyed by hash.

	belief_dict (Dict[str, float]) – Dict of belief scores keyed by hash.

	pkl_filename (str) – Name of pickle file to save to (if reconverting) or load from (if not
reconverting). If an S3 path is given (i.e., pkl_filename starts with
s3:), the file is loaded to/saved from S3. If not given,
reloads the content (overriding reload).

	normalize_names – If True, detect and try to merge name duplicates (same entity with
different names, e.g. Loratadin vs loratadin). Default: False

	Returns

	DataFrame containing the content, with columns: ‘agA_ns’, ‘agA_id’,
‘agA_name’, ‘agB_ns’, ‘agB_id’, ‘agB_name’, ‘stmt_type’,
‘evidence_count’, ‘stmt_hash’.

	Return type

	pandas.DataFrame

General Helper Functions (indra_db.util.helpers)

Functions with broad utility throughout the repository, but otherwise
miscellaneous.

	
indra_db.util.helpers.get_raw_stmts_frm_db_list(db, db_stmt_objs, fix_refs=True, with_sids=True)

	Convert table objects of raw statements into INDRA Statement objects.

	
indra_db.util.helpers.get_statement_object(db_stmt)

	Get an INDRA Statement object from a db_stmt.

Routines for Inserting Statements and Content (indra_db.util.insert)

Inserting content into the database can be a rather involved process, but here
are defined high-level utilities to uniformly accomplish the task.

	
indra_db.util.insert.extract_agent_data(stmt, stmt_id)

	Create the tuples for copying agents into the database.

	
indra_db.util.insert.insert_db_stmts(db, stmts, db_ref_id, verbose=False, batch_id=None)

	Insert statement, their database, and any affiliated agents.

Note that this method is for uploading statements that came from a
database to our database, not for inserting any statements to the database.

	Parameters

	
	db (DatabaseManager) – The manager for the database into which you are loading statements.

	stmts (list [indra.statements.Statement]) – (Cannot be a generator) A list of un-assembled indra statements, each
with EXACTLY one evidence and no exact duplicates, to be uploaded to
the database.

	db_ref_id (int) – The id to the db_ref entry corresponding to these statements.

	verbose (bool) – If True, print extra information and a status bar while compiling
statements for insert. Default False.

	batch_id (int or None) – Select a batch id to use for this upload. It can be used to trace what
content has been added.

	
indra_db.util.insert.insert_pa_stmts(db, stmts, verbose=False, do_copy=True, ignore_agents=False, commit=True)

	Insert pre-assembled statements, and any affiliated agents.

	Parameters

	
	db (DatabaseManager) – The manager for the database into which you are loading pre-assembled
statements.

	stmts (iterable [indra.statements.Statement]) – A list of pre-assembled indra statements to be uploaded to the datbase.

	verbose (bool) – If True, print extra information and a status bar while compiling
statements for insert. Default False.

	do_copy (bool) – If True (default), use pgcopy to quickly insert the agents.

	ignore_agents (bool) – If False (default), add agents to the database. If True, then agent
insertion is skipped.

	commit (bool) – If True (default), commit the result immediately. Otherwise the results
are not committed (thus allowing multiple related insertions to be
neatly rolled back upon failure.)

	
indra_db.util.insert.insert_raw_agents(db, batch_id, stmts=None, verbose=False, num_per_yield=100, commit=True)

	Insert agents for statements that don’t have any agents.

	Parameters

	
	db (DatabaseManager) – The manager for the database into which you are adding agents.

	batch_id (int) – Every set of new raw statements must be given an id unique to that copy
That id is used to get the set of statements that need agents added.

	stmts (list[indra.statements.Statement]) – The list of statements that include those whose agents are being
uploaded.

	verbose (bool) – If True, print extra information and a status bar while compiling
agents for insert from statements. Default False.

	num_per_yield (int) – To conserve memory, statements are loaded in batches of num_per_yeild
using the yeild_per feature of sqlalchemy queries.

	commit (bool) – Optionally do not commit at the end. Default is True, meaning a commit
will be executed.

	
indra_db.util.insert.regularize_agent_id(id_val, id_ns)

	Change agent ids for better search-ability and index-ability.

Some Miscellaneous Modules

Here are some modules and files that live on their own, and don’t fit neatly
into other categories.

Low Level Database Interface (indra_db.databases)

The Database Manager classes are the lowest level interface with the database,
implemented with SQLAlchemy, providing useful short-cuts but also allowing full
access to SQLAlchemy’s API.

	
class indra_db.databases.DatabaseManager(url, label=None, protected=False)

	An object used to access INDRA’s database.

This object can be used to access and manage indra’s database. It includes
both basic methods and some useful, more high-level methods. It is designed
to be used with postgresql, or sqlite.

This object is primarily built around sqlalchemy, which is a required
package for its use. It also optionally makes use of the pgcopy package for
large data transfers.

If you wish to access the primary database, you can simply use the
get_db function to get an instance of this object using the default
settings.

	Parameters

	
	url (str) – The database to which you want to interface.

	label (OPTIONAL[str]) – A short string to indicate the purpose of the db instance. Set as
db_label when initialized with get_db(db_label).

Example

If you wish to access the primary database and find the the metadata for a
particular pmid, 1234567:

from indra.db import get_db
db = get_db('primary')
res = db.select_all(db.TextRef, db.TextRef.pmid == '1234567')

You will get a list of objects whose attributes give the metadata contained
in the columns of the table.

For more sophisticated examples, several use cases can be found in
indra.tests.test_db.

	
classmethod create_instance(instance_name, size, tag_dict=None)

	Allocate the resources on RDS for a database, and return handle.

	
get_config_string()

	Print a config entry for this handle.

This is useful after using create_instance.

	
get_env_string()

	Generate the string for an environment variable.

This is useful after using create_instance.

	
grab_session()

	Get an active session with the database.

	
get_tables()

	Get a list of available tables.

	
show_tables(active_only=False, schema=None)

	Print a list of all the available tables.

	
get_active_tables(schema=None)

	Get the tables currently active in the database.

	Parameters

	schema (None or st) – The name of the schema whose tables you wish to see. The default is
public.

	
get_schemas()

	Return the list of schema names currently in the database.

	
create_schema(schema_name)

	Create a schema with the given name.

	
drop_schema(schema_name, cascade=True)

	Drop a schema (rather forcefully by default)

	
get_column_names(table)

	“Get a list of the column labels for a table.

Note that if the table involves a schema, the schema name must be
prepended to the table name.

	
get_column_objects(table)

	Get a list of the column object for the given table.

Note that if the table involves a schema, the schema name must be
prepended to the table name.

	
commit(err_msg)

	Commit, and give useful info if there is an exception.

	
link(table_1, table_2)

	Get the joining clause between two tables, if one exists.

If no link exists, an exception will be raised. Note that this only
works for directly links.

	
get_values(entry_list, col_names=None, keyed=False)

	Get the column values from the entries in entry_list

	
insert(table, ret_info=None, **input_dict)

	Insert a an entry into specified table, and return id.

	
insert_many(table, input_data_list, ret_info=None, cols=None)

	Insert many records into the table given by table_name.

	
delete_all(entry_list)

	Remove the given records from the given table.

	
get_copy_cursor()

	Execute SQL queries in the context of a copy operation.

	
make_copy_batch_id()

	Generate a random batch id for copying into the database.

This allows for easy retrieval of the assigned ids immediately after
copying in. At this time, only Reading and RawStatements use the
feature.

	
copy_report_lazy(tbl_name, data, cols=None, commit=True, constraint=None, return_cols=None, order_by=None)

	Copy lazily, and report what rows were skipped.

	
copy_detailed_report_lazy(tbl_name, data, inp_cols=None, ret_cols=None, commit=True, constraint=None, skipped_cols=None, order_by=None)

	Copy lazily, returning data from some of the columns such as IDs.

	
copy_lazy(tbl_name, data, cols=None, commit=True, constraint=None)

	Copy lazily, skip any rows that violate constraints.

	
copy_push(tbl_name, data, cols=None, commit=True, constraint=None)

	Copy, pushing any changes to constraint violating rows.

	
copy_report_push(tbl_name, data, cols=None, commit=True, constraint=None, return_cols=None, order_by=None)

	Report on the rows skipped when pushing and copying.

	
copy(tbl_name, data, cols=None, commit=True)

	Use pg_copy to copy over a large amount of data.

	
filter_query(tbls, *args)

	Query a table and filter results.

	
count(tbl, *args)

	Get a count of the results to a query.

	
get_primary_key(tbl)

	Get an instance for the primary key column of a given table.

	
select_one(tbls, *args)

	Select the first value that matches requirements.

Requirements are given in kwargs from table indicated by tbl_name. See
select_all.

Note that if your specification yields multiple results, this method
will just return the first result without exception.

	
select_all(tbls, *args, **kwargs)

	Select any and all entries from table given by tbl_name.

The results will be filtered by your keyword arguments. For example if
you want to get a text ref with pmid ‘10532205’, you would call:

db.select_all('text_ref', db.TextRef.pmid == '10532205')

Note that double equals are required, not a single equal. Equivalently
you could call:

db.select_all(db.TextRef, db.TextRef.pmid == '10532205')

For a more complicated example, suppose you want to get all text refs
that have full text from pmc oa, you could select:

db.select_all(
 [db.TextRef, db.TextContent],
 db.TextContent.text_ref_id == db.TextRef.id,
 db.TextContent.source == 'pmc_oa',
 db.TextContent.text_type == 'fulltext'
)

	Parameters

	
	tbls – See above for usage.

	*args – See above for usage.

	**kwargs – yield_per: int or None
If the result to your query is expected to be large, you can choose
to only load yield_per items at a time, using the eponymous
feature of sqlalchemy queries. Default is None, meaning all results
will be loaded simultaneously.

	
select_all_batched(batch_size, tbls, *args, skip_idx=None, order_by=None)

	Load the results of a query in batches of size batch_size.

Note that this differs from using yeild_per in that the results are not
returned as a single iterable, but as an iterator of iterables.

Note also that the order of results, and thus the contents of offsets,
may vary for large queries unless an explicit order_by clause is added
to the query.

	
select_sample_from_table(number, table, *args, **kwargs)

	Select a number of random samples from the given table.

	Parameters

	
	number (int) – The number of samples to return

	table (str, table class, or column attribute of table class) – The table or table column to be sampled.

	*args – All other arguments are passed to select_all, including any and
all filtering clauses.

	**kwargs – All other arguments are passed to select_all, including any and
all filtering clauses.

	Return type

	A list of sqlalchemy orm objects

	
has_entry(tbls, *args)

	Check whether an entry/entries matching given specs live in the db.

	
pg_dump(dump_file, **options)

	Use the pg_dump command to dump part of the database onto s3.

The pg_dump tool must be installed, and must be a compatible version
with the database(s) being used.

All keyword arguments are converted into flags/arguments of pg_dump. For
documentation run pg_dump –help. This will also confirm you have
pg_dump installed.

By default, the “General” and “Connection” options are already set. The
most likely specification you will want to use is –table or
–schema, specifying either a particular table or schema to dump.

	Parameters

	dump_file (S3Path or str) – The location on s3 where the content should be dumped.

	
pg_restore(dump_file, **options)

	Load content into the database from a dump file on s3.

	
exception indra_db.databases.IndraDbException

	

	
indra_db.databases.readers = {'EIDOS': 5, 'ISI': 4, 'MTI': 6, 'REACH': 1, 'SPARSER': 2, 'TRIPS': 3}

	A dict mapping each reader a unique integer ID.

These ID’s are used in creating the reading primary ID hashes. Thus, for a new
reader to be fully integrated, it must be added to the above dictionary.

	
indra_db.databases.reader_versions = {'eidos': ['0.2.3-SNAPSHOT'], 'isi': ['20180503'], 'mti': ['1.0'], 'reach': ['61059a-biores-e9ee36', '1.3.3-61059a-biores-', '1.6.1', '1.6.3-e48717'], 'sparser': ['sept14-linux\n', 'sept14-linux', 'June2018-linux', 'October2018-linux', 'February2020-linux', 'April2020-linux'], 'trips': ['STATIC', '2019Nov14', '2021Jan26']}

	A dict of list values keyed by reader name, tracking reader versions.

The oldest versions are to the left, and the newest to the right. We keep track
of all past versions as it is often not practical nor necessary to re-run a
reading on all content. Even in cases where it is, it is often useful to be
able to compare results.

As with the readers variable above, this is used in the creation of
the unique hash for a reading entry. For a new reader version to work, it must
be added to the appropriate list.

	
class indra_db.databases.PrincipalDatabaseManager(host, label=None, protected=False)

	This class represents the methods special to the principal database.

	
generate_readonly(belief_dict, allow_continue=True)

	Manage the materialized views.

	Parameters

	
	belief_dict (dict) – The dictionary, keyed by hash, of belief calculated for Statements.

	allow_continue (bool) – If True (default), continue to build the schema if it already
exists. If False, give up if the schema already exists.

	
dump_readonly(dump_file=None)

	Dump the readonly schema to s3.

	
create_tables(tbl_list=None)

	Create the public tables for INDRA database.

	
drop_tables(tbl_list=None, force=False)

	Drop the tables for INDRA database given in tbl_list.

If tbl_list is None, all tables will be dropped. Note that if force
is False, a warning prompt will be raised to asking for confirmation,
as this action will remove all data from that table.

	
class indra_db.databases.ReadonlyDatabaseManager(host, label=None, protected=True)

	This class represents the readonly database.

	
get_config_string()

	Print a config entry for this handle.

This is useful after using create_instance.

	
get_source_names() → set

	Get a list of the source names as they appear in SourceMeta cols.

	
get_active_tables(schema='readonly')

	Get the tables currently active in the database.

	Parameters

	schema (None or st) – The name of the schema whose tables you wish to see. The default is
readonly.

	
load_dump(dump_file, force_clear=True)

	Load from a dump of the readonly schema on s3.

Belief Calculator (indra_db.belief)

The belief in the knowledge of a Statement is a measure of our confidence that
the Statement is an accurate representation of the text, _NOT_ our confidence
in the validity of what was in that text. Given the size of the content in the
database, some special care is needed when calculating this value, which
depends heavily on the support relations between pre-assembled Statements.

This file contains tools to calculate belief scores for the database.

Scores are calculated using INDRA’s belief engine, with MockStatements and
MockEvidence derived from shallow metadata on the database, allowing the entire
corpus to be processed locally in RAM, in very little time.

	
exception indra_db.belief.LoadError

	

	
class indra_db.belief.MockEvidence(source_api, **annotations)

	A class to imitate real INDRA Evidence for calculating belief.

	
class indra_db.belief.MockStatement(mk_hash, evidence=None, supports=None, supported_by=None)

	A class to imitate real INDRA Statements for calculating belief.

	
indra_db.belief.load_mock_statements(db, hashes=None, sup_links=None)

	Generate a list of mock statements from the pa statement table.

	
indra_db.belief.populate_support(stmts, links)

	Populate the supports supported_by lists of statements given links.

	Parameters

	
	stmts (list[MockStatement/Statement]) – A list of objects with supports and supported_by attributes which are
lists or equivalent.

	links (list[tuple]) – A list of pairs of hashes or matches_keys, where the first supports the
second.

INDRA Database REST API

The INDRA Database software has been developed to create and maintain a
database of text references, content, reading results, and ultimately INDRA
Statements extracted from those reading results. The software also manages
the generation and update process of cleaning, deduplicating, and finding
relations between the raw Statement extractions, into what are called
pre-assembled Statements. All INDRA Statements can be represented as JSON,
which is the format returned by the API.

This web API provides the code necessary to support a REST service which
allows access to the pre-assembled Statements in a database. The system is
still under heavy development so capabilities are always expanding, but as
of this writing, the API supports:

	``statements/from_agents` <#from-agents>`_, getting Statements by agents, using
various ids or names, by statement type (e.g. Phosphorylation), or

	``statements/from_hash` <#from-hash>`_ and
``statements/from_hashes` <#from-hashes>`_, getting Statements by Statement
hash, either singly or in batches, and

	``statements/from_papers` <#from-papers>`_, getting Statements using the paper
ids from which they were extracted, and

	``curation/submit/<hash>` <#curation>`_ you can also curate Statements,
helping us improve the quality and accuracy of our content.

As mentioned, the service is changing rapidly, and this documentation may at
times be out of date. For the latest, check github or contact us.

You need the following information to access a running web service:

	The address of the web service (below shown with the placeholder api.host)

	An API key which needs to be sent in the header of each request to the
service, or any other credentials that are implemented.

If you want to use our implementation of the web API, you can contact us for
the path and an API key.

The code to support the REST service can be found in api.py, implemented
using the Flask Python package. The means of hosting this api are left to
the user. We have had success using Zappa [https://github.com/Miserlou/Zappa]
and AWS Lambda, and recommend it for a quick and efficient way to get the API
up and running.

The Statement Endpoints

For all queries, an API key is required, which is passed as a parameter
api_key to any/all queries. Below is detailed documentation for the
different endpoints of the API that return statements (i.e. those with the root
/statements). All endpoints that return statements have the following
options to control the size and order of the response:

	format: The endpoint is capable of returning both HTML and JSON content
by setting the format parameter to “html” or “json”, respectively. See the
section on output formats below.

	max_stmts: Set the maximum number of statements you wish to receive.
The REST API maximum is 1000, which cannot be overridden by this argument
(to prevent request timeouts).

	ev_limit: The default varies, but in general the amount of Evidence
returned for each statement is limited. A single statement can have upwards of
10,000 pieces of evidence, so this allows queries to be run reliably. There
is no limitation on this value, so use with caution. Setting too high a value
may cause a request to time out or be too large to return.

	best_first: This is set to “true” by default, so statements with the
most evidence are returned first. These are generally the most reliable,
however they are also generally the most canonical. Set this parameter to
“false” to get statements in an arbitrary order. This can also speed up a
query. You may however find you get a lot of low-quality content.

[bookmark: output-formats]

The output formats

The output format is controlled by the **format** option described above,
with options to return JSON or HTML.

JSON: The default value, intended for programmatic use, is “json”. The
JSON
that is returned is of the following form (with many made-up but reasonable
numbers filled in):

{
 "statements": { # Dict of statement JSONs keyed by hash
 "12345234234": {...}, # Statement JSON 1
 "-246809323482": {...}, # Statement JSON 2
 ...},
 "offset": 2000, # offset of SQL query
 "evidence_limit": 10, # evidence limit used
 "statement_limit": 1000, # REST API Limit
 "evidence_totals": { # dict of available evidence for each statement keyed by hash
 "12345234234": 7657,
 "-246809323482": 870,
 ...},
 "total_evidence": 163708, # The total amount of evidence available
 "evidence_returned": 10000 # The total amount of evidence returned
}

where the "statements" element contains a dictionary of INDRA Statement
JSONs keyed by a shallow statement hash (see here for more
details on these hashes). You can look at the
JSON schema [https://github.com/sorgerlab/indra/blob/master/indra/resources/statements_schema.json]
on github for details on the Statement JSON. To learn more about INDRA
Statements, you can read the
documentation [https://indra.readthedocs.io/en/latest/modules/statements.html].

HTML: The other format parameter option, designed for easier manual
usage, is “html”. The service will then return an HTML document that, when
opened in a web browser and if logged in, provides a graphical user interface
for viewing and curating statements at the evidence level. The web page also
allows you to easily query for more evidence for a given statement.
Documentation for the html output (produced by INDRA’s HTML assembler) can be found
here [https://indra.readthedocs.io/en/latest/modules/assemblers/index.html].

[bookmark: from-agents]

Get Statements by agents (and type): GET api.host/statements/from_agents

This endpoint allows you to get statements filtering by their agents and
the type of Statement. The query parameters are as follows:

	subject, object: The HGNC gene symbol of the subject or
object of the Statement. Note: only one of each of subject and
object will be accepted per query.

	Example 1: if looking for Statements where MAP2K1 is a subject
(e.g. “What does MAP2K1 phosphorylate?”), specify subject=MAP2K1 as a
query parameter

	Example 2: if looking for Statements where MAP2K1 is the subject and
MAPK1 is the object, add both subject=MAP2K1 and object=MAPK1 as
query parameters.

	Example 3: you can specify the agent id namespace by appending
@<namespace> to the agent id in the parameter, e.g. subject=6871@HGNC.

	agent*: This parameter is used if the specific role of the agent
(subject or object) is irrelevant, or the distinction doesn’t apply to the
type of Statement of interest (e.g. Complex, Translocation, ActiveForm).
Note: You can include as many agent* queries as you like, however you
will only get Statements that include all agents you query, in addition to
those queried for subject and object. Furthermore, to include multiple
agents on our particular implementation, which uses the AWS API Gateway,
you must include a suffix to each agent key, such as agent0 and agent1,
or else all but one agent will be stripped out. Note that you need not use
integers, you can add any suffix you like, e.g. agentOfDestruction=TP53
would be entirely valid.

	Example 1: To obtain Statements that involve SMAD2 in any role, add
agent=SMAD2 to the query.

	Example 2: As with subject and object, you can specify the
namespace for an agent by appending @<namespace> to the agent’s id, e.g.
agent=ERK@TEXT.

	Example 3: If you wanted to query multiple statements, you could include
agent0=MEK@FPLX and agent1=ERK@FPLX. Note that the value of the
integers has no real bearing on the ordering, and only serves to make the
agents uniquely keyed. Thus agent1=MEK@FPLX and agent0=ERK@FPLX will
give exactly the same result.

	type: This parameter can be used to specify what type of Statement
of interest (e.g. Phosphorylation, Activation, Complex).

	Example: To answer the question “Does MAP2K1 phosphorylate MAPK1?”
the parameter type=Phosphorylation can be included in your query.
Note that this field is not case sensitive, so type=phosphorylation would
give the same result.

[bookmark: from-hash]

Get a Statement by hash: GET api.host/statements/from_hash/<hash>

INDRA Statement objects have a method, get_hash, which produces hash from
the content of the Statement. A shallow hash only considers the meaning of
the statement (agents, type, modifications, etc.), whereas a deeper hash also
considers the list of evidence available for that Statement. The shallow hash
is what is used in this application, as it has the same uniqueness properties
used in deduplication. As mentioned above, the Statements are returned keyed by
their hash. In addition, if you construct a Statement in python, you may get
its hash and quickly find any evidence for that Statement in the database.

This endpoint has no extra parameters, but rather takes an extension to the
path. So, to look up the hash 123456789, you would use
statements/from_hash/123456789.

Because this only returns one statement, the default evidence limit is
extremely generous, set to 10,000. Thus you are most likely to get all the
evidence for a given statement this way. As described above, the evidence
limit can also be raised, at the risk of a timed out request.

[bookmark: from-hashes]

Get Statements from many hashes: POST api.host/statements/from_hashes

Like the previous endpoint, this endpoint uses hashes to retrieve Statements,
however instead of only being allowed one at a time, a bach of
hashes may be sent as json data. Because data is sent, this is a POST request,
even though you are in practice “getting” information. There are no special
parameters for this endpoint. The json data should be formatted as:

{"hashes": [12345, 246810]}

with up to 1,000 hashes given in the list.

[bookmark: from-papers]

Get Statements from paper ids: POST api.host/statements/from_papers

Using this endpoint, you can pretend you have a fleet of text extraction tools
that run in seconds! Specifically, you can get the INDRA Statements with
evidence from a given list of papers by passing one of the ids of those papers.
As with the above method, the fact that data (paper ids) is send requires
this to be a POST request. The papers ids should be formatted as:

{"ids": [{"id": "12345", "type": "pmid"},
 {"id": "234525", "type": "tcid"},
 {"id": "PMC23423", "type": "pmcid"}]}

a list of dicts, each containing id type and and id value.

[bookmark: curation]

Curation

Because the mechanisms represented by our Statements come in large part from
automatic extractions, there can often be errors. For this reason, we always
provide the sentences from which a Statement was extracted (if we extracted
it, some of our content comes from other curated databases), as well as
provenance to lead back to the content (abstract, full text, etc.) that was
read, which allows you to use your own judgement regarding the validity of
a Statement.

If you find something wrong with a Statement, you can use this curation
endpoint to record your observation. This will not necessarily have any
immediate effect on the output, however, over time it will help us improve the
readers we use, our methods for extracting Statements from those reader
outputs, could help us filter erroneous content, and will help us improve our
pre-assembly algorithms.

Further instruction on curation best practices can be found
here [https://indra.readthedocs.io/en/latest/tutorials/html_curation.html#curation-guidelines].

Curate statements: POST api.host/curation/submit/<hash>

If you wish to curate a Statement, you must first decide whether you are
curating the Statement as generally incorrect, or whether a particular
sentence supports a given Statement. This is the “level” of your curation:

	pa: At this level, you are curating the knowledge in a
pre-assembled Statement. For example, if a Statement
indicates that “differentiation binds apoptosis”, regardless of whether the
reader(s) made a valid extraction, it is clearly wrong.

	raw: At this level, you are curating a particular raw extraction, in
other words stating that an automatic reader made an error. Even more
explicitly, you can judge whether the sentence supports the extracted
Statement. For example the (hypothetical) sentence “KRAS was found to actively
inhibit BRAF” does not support the Statement “KRAS activates BRAF”. As another
example (here a grounding error), would be that the sentence “IR causes cell
death”, where IR is Ionizing Radiation does not support the extraction
“‘Insulin Receptor’ causes cell death”.

The two different levels also have different hashes. At the pa level, the
hashes discussed above are used, as they are calculated from the
knowledge contained in the statement, independent of the evidence. At the raw
level, a different hash must be included: the source_hash, which identifies
a specific piece of evidence, without considering the Statement extracted.
Within a Statement JSON, there is a key “evidence”, with a list of Evidence
JSON, which includes an entry for “source_hash”:

{"evidence": [{"source_hash": 98687578576598, ...}, ...], ...}

Once you know the level, and you have the correct hash(es) (the shallow
pre-assembly hash and/or the source hash), you can curate a statement by
POSTing a request with JSON data to the endpoint, as shown in the heading. The
JSON data should contain the following fields:

	tag: A very short word or phrase categorizing the error, for example
“grounding” for a grounding error.

	text: A brief description of what you think is most wrong.

	curator: Your name, initials, email, or other way to identify yourself.
Whichever you choose, please be consistent.

Note that you can also indicate that a Statement is correct. In particular,
if you find that a Statement has some evidence that supports the Statement and
some that does not, curating examples of both is valuable. In general, flagging
correct Statements can be just as valuable as flagging incorrect Statements.

Usage examples

The web service accepts standard HTTP requests, and any client that can
send such requests can be used to interact with the service. Here we
provide usage examples with the curl command line tool and python of
some of the endpoints. This is by no means a comprehensive list, but rather
demonstrates some of the crucial features discussed above.

In the examples, we assume the path to the web API is https://api.host/, and
that the API key is 12345.

curl is a command line tool on Linux and Mac, making it a convenient tool
for making calls to this web API.

Using curl to query Statements about “MAP2K1 phosphorylates MAPK1”:

curl -X GET "http://api.host/statements/from_agents?subject=MAP2K1&object=MAPK1&type=phosphorylation&api_key=12345"

 Python Module Index

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 indra_db	

 	
 	
 indra_db.belief	

 	
 	
 indra_db.cli.content	

 	
 	
 indra_db.cli.dump	

 	
 	
 indra_db.cli.knowledgebase	

 	
 	
 indra_db.cli.preassembly	

 	
 	
 indra_db.cli.reading	

 	
 	
 indra_db.client.datasets	

 	
 	
 indra_db.client.principal.content	

 	
 	
 indra_db.client.principal.curation	

 	
 	
 indra_db.client.principal.raw_statements	

 	
 	
 indra_db.client.readonly.query	

 	
 	
 indra_db.client.statements	

 	
 	
 indra_db.databases	

 	
 	
 indra_db.preassembly.preassemble_db	

 	
 	
 indra_db.preassembly.submitter	

 	
 	
 indra_db.reading.read_db	

 	
 	
 indra_db.reading.read_db_aws	

 	
 	
 indra_db.reading.submitter	

 	
 	
 indra_db.schemas.indexes	

 	
 	
 indra_db.schemas.mixins	

 	
 	
 indra_db.schemas.principal_schema	

 	
 	
 indra_db.schemas.readonly_schema	

 	
 	
 indra_db.util.constructors	

 	
 	
 indra_db.util.content_scripts	

 	
 	
 indra_db.util.distill_statements	

 	
 	
 indra_db.util.dump_sif	

 	
 	
 indra_db.util.helpers	

 	
 	
 indra_db.util.insert	

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | X

Symbols

 	
 	
 --buffer

 	indra-db-reading-run command line option

 	indra-db-reading-run-local command line option

 	
 --continuing

 	indra-db-content-run command line option

 	indra-db-dump-run-all command line option

 	indra-db-dump-run-belief command line option

 	indra-db-dump-run-end command line option

 	indra-db-dump-run-full-pa-json command line option

 	indra-db-dump-run-full-pa-stmts command line option

 	indra-db-dump-run-mti-mesh-ids command line option

 	indra-db-dump-run-principal-statistics command line option

 	indra-db-dump-run-readonly command line option

 	indra-db-dump-run-res-pos command line option

 	indra-db-dump-run-sif command line option

 	indra-db-dump-run-source-count command line option

 	indra-db-dump-run-start command line option

 	
 --date-stamp

 	indra-db-dump-run-belief command line option

 	indra-db-dump-run-end command line option

 	indra-db-dump-run-full-pa-json command line option

 	indra-db-dump-run-full-pa-stmts command line option

 	indra-db-dump-run-mti-mesh-ids command line option

 	indra-db-dump-run-principal-statistics command line option

 	indra-db-dump-run-readonly command line option

 	indra-db-dump-run-res-pos command line option

 	indra-db-dump-run-sif command line option

 	indra-db-dump-run-source-count command line option

 	
 --debug

 	indra-db-content-run command line option

 	
 --delete-existing

 	indra-db-dump-run-all command line option

 	
 --dump-only

 	indra-db-dump-run-all command line option

 	
 --force

 	indra-db-dump-run-belief command line option

 	indra-db-dump-run-end command line option

 	indra-db-dump-run-full-pa-json command line option

 	indra-db-dump-run-full-pa-stmts command line option

 	indra-db-dump-run-mti-mesh-ids command line option

 	indra-db-dump-run-principal-statistics command line option

 	indra-db-dump-run-readonly command line option

 	indra-db-dump-run-res-pos command line option

 	indra-db-dump-run-sif command line option

 	indra-db-dump-run-source-count command line option

 	
 --from-dump

 	indra-db-dump-load-readonly command line option

 	indra-db-dump-run-belief command line option

 	indra-db-dump-run-end command line option

 	indra-db-dump-run-full-pa-json command line option

 	indra-db-dump-run-full-pa-stmts command line option

 	indra-db-dump-run-mti-mesh-ids command line option

 	indra-db-dump-run-principal-statistics command line option

 	indra-db-dump-run-readonly command line option

 	indra-db-dump-run-res-pos command line option

 	indra-db-dump-run-sif command line option

 	indra-db-dump-run-source-count command line option

 	
 	
 --load-only

 	indra-db-dump-run-all command line option

 	
 --long

 	indra-db-content-list command line option

 	
 --num-procs

 	indra-db-reading-run-local command line option

 	
 --project-name

 	indra-db-reading-run command line option

 	
 --with-raw

 	indra-db-pa-list command line option

 	
 -b

 	indra-db-reading-run command line option

 	indra-db-reading-run-local command line option

 	
 -c

 	indra-db-content-run command line option

 	indra-db-dump-run-all command line option

 	indra-db-dump-run-belief command line option

 	indra-db-dump-run-end command line option

 	indra-db-dump-run-full-pa-json command line option

 	indra-db-dump-run-full-pa-stmts command line option

 	indra-db-dump-run-mti-mesh-ids command line option

 	indra-db-dump-run-principal-statistics command line option

 	indra-db-dump-run-readonly command line option

 	indra-db-dump-run-res-pos command line option

 	indra-db-dump-run-sif command line option

 	indra-db-dump-run-source-count command line option

 	indra-db-dump-run-start command line option

 	
 -d

 	indra-db-content-run command line option

 	indra-db-dump-run-all command line option

 	indra-db-dump-run-belief command line option

 	indra-db-dump-run-end command line option

 	indra-db-dump-run-full-pa-json command line option

 	indra-db-dump-run-full-pa-stmts command line option

 	indra-db-dump-run-mti-mesh-ids command line option

 	indra-db-dump-run-principal-statistics command line option

 	indra-db-dump-run-readonly command line option

 	indra-db-dump-run-res-pos command line option

 	indra-db-dump-run-sif command line option

 	indra-db-dump-run-source-count command line option

 	
 -f

 	indra-db-dump-run-belief command line option

 	indra-db-dump-run-end command line option

 	indra-db-dump-run-full-pa-json command line option

 	indra-db-dump-run-full-pa-stmts command line option

 	indra-db-dump-run-mti-mesh-ids command line option

 	indra-db-dump-run-principal-statistics command line option

 	indra-db-dump-run-readonly command line option

 	indra-db-dump-run-res-pos command line option

 	indra-db-dump-run-sif command line option

 	indra-db-dump-run-source-count command line option

 	
 -l

 	indra-db-content-list command line option

 	indra-db-dump-run-all command line option

 	
 -n

 	indra-db-reading-run-local command line option

 	
 -r

 	indra-db-pa-list command line option

_

 	
 	_mesh_nums (indra_db.client.readonly.query.FromMeshIds attribute)

 	
 	_mesh_type (indra_db.client.readonly.query.FromMeshIds attribute)

A

 	
 	add_to_review() (indra_db.cli.content.ContentManager method)

 	
 	agent_interactions() (indra_db.schemas.readonly_schema.ReadonlySchema method)

B

 	
 	Belief (class in indra_db.cli.dump)

 	belief() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	BelLcManager (class in indra_db.cli.knowledgebase)

 	BiogridManager (class in indra_db.cli.knowledgebase)

 	
 	build_hash_query() (indra_db.client.readonly.query.Query method)

 	BulkAwsReadingManager (class in indra_db.cli.reading)

 	BulkLocalReadingManager (class in indra_db.cli.reading)

 	BulkReadingManager (class in indra_db.cli.reading)

C

 	
 	CBNManager (class in indra_db.cli.knowledgebase)

 	commit() (indra_db.databases.DatabaseManager method)

 	construct_readers() (in module indra_db.reading.read_db)

 	ContentManager (class in indra_db.cli.content)

 	copy() (indra_db.client.readonly.query.Query method)

 	(indra_db.databases.DatabaseManager method)

 	copy_detailed_report_lazy() (indra_db.databases.DatabaseManager method)

 	copy_lazy() (indra_db.databases.DatabaseManager method)

 	copy_push() (indra_db.databases.DatabaseManager method)

 	
 	copy_report_lazy() (indra_db.databases.DatabaseManager method)

 	copy_report_push() (indra_db.databases.DatabaseManager method)

 	count() (indra_db.databases.DatabaseManager method)

 	create_corpus() (indra_db.preassembly.preassemble_db.DbPreassembler method)

 	create_instance() (indra_db.databases.DatabaseManager class method)

 	create_schema() (indra_db.databases.DatabaseManager method)

 	create_tables() (indra_db.databases.PrincipalDatabaseManager method)

 	CTDManager (class in indra_db.cli.knowledgebase)

 	curations() (indra_db.schemas.principal_schema.PrincipalSchema method)

D

 	
 	DatabaseManager (class in indra_db.databases)

 	DatabaseMeshRefData (class in indra_db.reading.read_db)

 	DatabaseReader (class in indra_db.reading.read_db)

 	DatabaseResultData (class in indra_db.reading.read_db)

 	DatabaseStatementData (class in indra_db.reading.read_db)

 	db_info() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	DbIndexError

 	DbPreassembler (class in indra_db.preassembly.preassemble_db)

 	delete_all() (indra_db.databases.DatabaseManager method)

 	delete_raw_statements_by_id() (in module indra_db.util.distill_statements)

 	discarded_statements() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	distill_stmts() (in module indra_db.util.distill_statements)

 	doi_in() (indra_db.schemas.mixins.IndraDBRefTable class method)

 	doi_notin() (indra_db.schemas.mixins.IndraDBRefTable class method)

 	
 	download_archive() (indra_db.cli.content.PmcManager method)

 	drop_schema() (indra_db.databases.DatabaseManager method)

 	drop_tables() (indra_db.databases.PrincipalDatabaseManager method)

 	DrugBankManager (class in indra_db.cli.knowledgebase)

 	dump() (in module indra_db.cli.dump)

 	dump_annotations() (indra_db.cli.content.Pubmed method)

 	dump_readings_to_db() (indra_db.reading.read_db.DatabaseReader method)

 	dump_readings_to_pickle() (indra_db.reading.read_db.DatabaseReader method)

 	dump_readonly() (indra_db.databases.PrincipalDatabaseManager method)

 	dump_results_to_db() (indra_db.reading.read_db.DatabaseReader method)

 	dump_results_to_pickle() (indra_db.reading.read_db.DatabaseReader method)

 	dump_sif() (in module indra_db.util.dump_sif)

 	DumperChild (in module indra_db.cli.dump)

 	DumpOrderError

E

 	
 	Elsevier (class in indra_db.cli.content)

 	End (class in indra_db.cli.dump)

 	enrich_textrefs() (indra_db.cli.content.Manuscripts method)

 	ev_filter() (indra_db.client.readonly.query.FromMeshIds method)

 	(indra_db.client.readonly.query.Intersection method)

 	(indra_db.client.readonly.query.Union method)

 	
 	evidence_counts() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	EvidenceFilter (class in indra_db.client.readonly.query)

 	export_relation_dict_to_tsv() (in module indra_db.client.datasets)

 	extract_agent_data() (in module indra_db.util.insert)

F

 	
 	fast_raw_pa_link() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	filter_query() (indra_db.databases.DatabaseManager method)

 	filter_text_content() (indra_db.cli.content.PmcManager method)

 	filter_text_refs() (indra_db.cli.content.ContentManager method)

 	fix_doi() (indra_db.cli.content.Pubmed static method)

 	from_date() (indra_db.cli.dump.Start class method)

 	
 	from_simple_json() (indra_db.client.readonly.query.Query class method)

 	FromAgentJson (class in indra_db.client.readonly.query)

 	FromMeshIds (class in indra_db.client.readonly.query)

 	FromPapers (class in indra_db.client.readonly.query)

 	FullPaJson (class in indra_db.cli.dump)

 	FullPaStmts (class in indra_db.cli.dump)

G

 	
 	generate_reading_id() (in module indra_db.reading.read_db)

 	generate_readonly() (indra_db.databases.PrincipalDatabaseManager method)

 	get_active_tables() (indra_db.databases.DatabaseManager method)

 	(indra_db.databases.ReadonlyDatabaseManager method)

 	get_agents() (indra_db.client.readonly.query.Query method)

 	get_archives_after_date() (indra_db.cli.content.PmcOA method)

 	get_cols() (indra_db.reading.read_db.DatabaseMeshRefData static method)

 	(indra_db.reading.read_db.DatabaseStatementData static method)

 	get_column_names() (indra_db.databases.DatabaseManager method)

 	get_column_objects() (indra_db.databases.DatabaseManager method)

 	get_config_string() (indra_db.databases.DatabaseManager method)

 	(indra_db.databases.ReadonlyDatabaseManager method)

 	get_content_by_refs() (in module indra_db.client.principal.content)

 	get_copy_cursor() (indra_db.databases.DatabaseManager method)

 	get_csv_files() (indra_db.cli.content.PmcManager method)

 	get_curations() (in module indra_db.client.principal.curation)

 	get_data_from_xml_str() (indra_db.cli.content.PmcManager method)

 	get_db() (in module indra_db.util.constructors)

 	get_env_string() (indra_db.databases.DatabaseManager method)

 	get_evidence() (in module indra_db.client.statements)

 	get_file_data() (indra_db.cli.content.Manuscripts method)

 	(indra_db.cli.content.PmcOA method)

 	get_filtered_db_stmts() (in module indra_db.util.distill_statements)

 	get_filtered_rdg_stmts() (in module indra_db.util.distill_statements)

 	get_grounding_curations() (in module indra_db.client.principal.curation)

 	get_hashes() (indra_db.client.readonly.query.Query method)

 	get_interactions() (indra_db.client.readonly.query.Query method)

 	get_latest_dump_s3_path() (in module indra_db.cli.dump)

 	get_latest_update() (indra_db.cli.content.ContentManager class method)

 	get_latest_updates() (indra_db.cli.reading.ReadingManager static method)

 	get_license() (indra_db.cli.content.Manuscripts method)

 	(indra_db.cli.content.PmcManager method)

 	(indra_db.cli.content.PmcOA method)

 	
 	get_missing_pmids() (indra_db.cli.content.PmcManager static method)

 	get_pmcid_file_dict() (indra_db.cli.content.PmcManager method)

 	get_primary_db() (in module indra_db.util.constructors)

 	get_primary_key() (indra_db.databases.DatabaseManager method)

 	get_raw_stmt_jsons() (in module indra_db.client.principal.raw_statements)

 	get_raw_stmt_jsons_from_agents() (in module indra_db.client.principal.raw_statements)

 	get_raw_stmt_jsons_from_papers() (in module indra_db.client.principal.raw_statements)

 	get_raw_stmts_frm_db_list() (in module indra_db.util.helpers)

 	get_reader_output() (in module indra_db.client.principal.content)

 	get_reading_stmt_dict() (in module indra_db.util.distill_statements)

 	get_readings() (indra_db.reading.read_db.DatabaseReader method)

 	get_ref_dict() (indra_db.schemas.mixins.IndraDBRefTable method)

 	get_relation_dict() (in module indra_db.client.datasets)

 	get_relations() (indra_db.client.readonly.query.Query method)

 	get_results() (indra_db.reading.read_db.DatabaseReader method)

 	get_ro() (in module indra_db.util.constructors)

 	get_ro_host() (in module indra_db.util.constructors)

 	get_schemas() (indra_db.databases.DatabaseManager method)

 	get_source_counts() (in module indra_db.util.dump_sif)

 	get_source_names() (indra_db.databases.ReadonlyDatabaseManager method)

 	get_statement_essentials() (in module indra_db.client.datasets)

 	get_statement_object() (in module indra_db.util.helpers)

 	get_statements() (in module indra_db.client.statements)

 	(indra_db.client.readonly.query.Query method)

 	get_statements_by_gene_role_type() (in module indra_db.client.statements)

 	get_statements_by_paper() (in module indra_db.client.statements)

 	get_statements_from_hashes() (in module indra_db.client.statements)

 	get_stmts_with_agent_text_like() (in module indra_db.util.content_scripts)

 	get_support() (in module indra_db.client.statements)

 	get_tables() (indra_db.databases.DatabaseManager method)

 	get_tarname_from_filename() (indra_db.cli.content.Manuscripts method)

 	get_text_content_from_stmt_ids() (in module indra_db.util.content_scripts)

 	get_values() (indra_db.databases.DatabaseManager method)

 	grab_session() (indra_db.databases.DatabaseManager method)

H

 	
 	has_entry() (indra_db.databases.DatabaseManager method)

 	has_ref() (indra_db.schemas.mixins.IndraDBRefTable class method)

 	HasAgent (class in indra_db.client.readonly.query)

 	HasDatabases (class in indra_db.client.readonly.query)

 	HasEvidenceBound (class in indra_db.client.readonly.query)

 	hash_pmid_counts() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	HasHash (class in indra_db.client.readonly.query)

 	
 	HasNumAgents (class in indra_db.client.readonly.query)

 	HasNumEvidence (class in indra_db.client.readonly.query)

 	HasOnlySource (class in indra_db.client.readonly.query)

 	HasReadings (class in indra_db.client.readonly.query)

 	HasSources (class in indra_db.client.readonly.query)

 	HasType (class in indra_db.client.readonly.query)

 	HPRDManager (class in indra_db.cli.knowledgebase)

I

 	
 	
 indra-db-content-list command line option

 	--long

 	-l

 	
 indra-db-content-run command line option

 	--continuing

 	--debug

 	-c

 	-d

 	SOURCES

 	TASK

 	
 indra-db-dump-list command line option

 	STATE

 	
 indra-db-dump-load-readonly command line option

 	--from-dump

 	
 indra-db-dump-run-all command line option

 	--continuing

 	--delete-existing

 	--dump-only

 	--load-only

 	-c

 	-d

 	-l

 	
 indra-db-dump-run-belief command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-end command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-full-pa-json command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-full-pa-stmts command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-mti-mesh-ids command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-principal-statistics command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-readonly command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-res-pos command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-sif command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-source-count command line option

 	--continuing

 	--date-stamp

 	--force

 	--from-dump

 	-c

 	-d

 	-f

 	
 indra-db-dump-run-start command line option

 	--continuing

 	-c

 	
 	
 indra-db-kb-run command line option

 	SOURCES

 	TASK

 	
 indra-db-pa-list command line option

 	--with-raw

 	-r

 	
 indra-db-pa-run command line option

 	PROJECT_NAME

 	TASK

 	
 indra-db-pipeline-stats command line option

 	TASK

 	
 indra-db-reading-run command line option

 	--buffer

 	--project-name

 	-b

 	TASK

 	
 indra-db-reading-run-local command line option

 	--buffer

 	--num-procs

 	-b

 	-n

 	TASK

 	
 indra_db.belief

 	module

 	
 indra_db.cli.content

 	module

 	
 indra_db.cli.dump

 	module

 	
 indra_db.cli.knowledgebase

 	module

 	
 indra_db.cli.preassembly

 	module

 	
 indra_db.cli.reading

 	module

 	
 indra_db.client.datasets

 	module

 	
 indra_db.client.principal.content

 	module

 	
 indra_db.client.principal.curation

 	module

 	
 indra_db.client.principal.raw_statements

 	module

 	
 indra_db.client.readonly.query

 	module

 	
 indra_db.client.statements

 	module

 	
 indra_db.databases

 	module

 	
 indra_db.preassembly.preassemble_db

 	module

 	
 indra_db.preassembly.submitter

 	module

 	
 indra_db.reading.read_db

 	module

 	
 indra_db.reading.read_db_aws

 	module

 	
 indra_db.reading.submitter

 	module

 	
 indra_db.schemas.indexes

 	module

 	
 indra_db.schemas.mixins

 	module

 	
 indra_db.schemas.principal_schema

 	module

 	
 indra_db.schemas.readonly_schema

 	module

 	
 indra_db.util.constructors

 	module

 	
 indra_db.util.content_scripts

 	module

 	
 indra_db.util.distill_statements

 	module

 	
 indra_db.util.dump_sif

 	module

 	
 indra_db.util.helpers

 	module

 	
 indra_db.util.insert

 	module

 	IndraDbException

 	IndraDBPreassemblyError

 	IndraDBRefTable (class in indra_db.schemas.mixins)

 	IndraDBTableMetaClass (class in indra_db.schemas.mixins)

 	insert() (indra_db.databases.DatabaseManager method)

 	insert_db_stmts() (in module indra_db.util.insert)

 	insert_many() (indra_db.databases.DatabaseManager method)

 	insert_pa_stmts() (in module indra_db.util.insert)

 	insert_raw_agents() (in module indra_db.util.insert)

 	Intersection (class in indra_db.client.readonly.query)

 	IntrusiveQuery (class in indra_db.client.readonly.query)

 	invert() (indra_db.client.readonly.query.Query method)

 	is_inverse_of() (indra_db.client.readonly.query.Intersection method)

 	(indra_db.client.readonly.query.Query method)

 	(indra_db.client.readonly.query.SourceIntersection method)

 	(indra_db.client.readonly.query.Union method)

 	is_trips_datestring() (in module indra_db.reading.read_db_aws)

 	item_type (indra_db.client.readonly.query.HasNumAgents attribute)

 	(indra_db.client.readonly.query.HasNumEvidence attribute)

 	(indra_db.client.readonly.query.HasType attribute)

 	iter_contents() (indra_db.cli.content.PmcManager method)

 	(indra_db.cli.content.Pubmed method)

 	iter_xmls() (indra_db.cli.content.PmcManager method)

L

 	
 	link() (indra_db.databases.DatabaseManager method)

 	list_component_queries() (indra_db.client.readonly.query.Query method)

 	list_dumps() (in module indra_db.cli.dump)

 	list_last_updates() (in module indra_db.cli.preassembly)

 	list_latest_raw_stmts() (in module indra_db.cli.preassembly)

 	load() (indra_db.cli.dump.Start method)

 	load_annotations() (indra_db.cli.content.Pubmed method)

 	
 	load_db_content() (in module indra_db.util.dump_sif)

 	load_dump() (indra_db.databases.ReadonlyDatabaseManager method)

 	load_files() (indra_db.cli.content.Pubmed method)

 	load_mock_statements() (in module indra_db.belief)

 	load_res_pos() (in module indra_db.util.dump_sif)

 	load_text_refs() (indra_db.cli.content.Pubmed method)

 	LoadError

M

 	
 	make_copy_batch_id() (indra_db.databases.DatabaseManager method)

 	make_dataframe() (in module indra_db.util.dump_sif)

 	make_graph() (in module indra_db.preassembly.preassemble_db)

 	make_results() (indra_db.reading.read_db.DatabaseReader method)

 	make_text_ref_str() (indra_db.cli.content.ContentManager method)

 	make_tuple() (indra_db.reading.read_db.DatabaseMeshRefData method)

 	(indra_db.reading.read_db.DatabaseStatementData method)

 	Manuscripts (class in indra_db.cli.content)

 	MergeQuery (class in indra_db.client.readonly.query)

 	mesh_concept_meta() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	mesh_concept_ref_counts() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	mesh_concepts() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	mesh_ids (indra_db.client.readonly.query.FromMeshIds attribute)

 	mesh_ref_annotations() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	mesh_term_meta() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	mesh_term_ref_counts() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	mesh_terms() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	MockEvidence (class in indra_db.belief)

 	MockStatement (class in indra_db.belief)

 	
 module

 	indra_db.belief

 	indra_db.cli.content

 	indra_db.cli.dump

 	indra_db.cli.knowledgebase

 	indra_db.cli.preassembly

 	indra_db.cli.reading

 	indra_db.client.datasets

 	indra_db.client.principal.content

 	indra_db.client.principal.curation

 	indra_db.client.principal.raw_statements

 	indra_db.client.readonly.query

 	indra_db.client.statements

 	indra_db.databases

 	indra_db.preassembly.preassemble_db

 	indra_db.preassembly.submitter

 	indra_db.reading.read_db

 	indra_db.reading.read_db_aws

 	indra_db.reading.submitter

 	indra_db.schemas.indexes

 	indra_db.schemas.mixins

 	indra_db.schemas.principal_schema

 	indra_db.schemas.readonly_schema

 	indra_db.util.constructors

 	indra_db.util.content_scripts

 	indra_db.util.distill_statements

 	indra_db.util.dump_sif

 	indra_db.util.helpers

 	indra_db.util.insert

 	
 	mti_ref_annotaions_test() (indra_db.schemas.principal_schema.PrincipalSchema method)

N

 	
 	name_meta() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	
 	not_has_ref() (indra_db.schemas.mixins.IndraDBRefTable class method)

O

 	
 	other_meta() (indra_db.schemas.readonly_schema.ReadonlySchema method)

P

 	
 	pa_activity() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	pa_agent_counts() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	pa_agents() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	pa_meta() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	pa_mods() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	pa_muts() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	pa_ref_link() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	pa_statements() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	pa_stmt_src() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	pa_support_links() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	PathwayCommonsManager (class in indra_db.cli.knowledgebase)

 	pg_dump() (indra_db.databases.DatabaseManager method)

 	pg_restore() (indra_db.databases.DatabaseManager method)

 	PhosphoElmManager (class in indra_db.cli.knowledgebase)

 	PhosphositeManager (class in indra_db.cli.knowledgebase)

 	pmcid_in() (indra_db.schemas.mixins.IndraDBRefTable class method)

 	pmcid_notin() (indra_db.schemas.mixins.IndraDBRefTable class method)

 	
 	PmcManager (class in indra_db.cli.content)

 	PmcOA (class in indra_db.cli.content)

 	pmid_in() (indra_db.schemas.mixins.IndraDBRefTable class method)

 	pmid_notin() (indra_db.schemas.mixins.IndraDBRefTable class method)

 	populate() (indra_db.cli.content.ContentManager method)

 	(indra_db.cli.content.Elsevier method)

 	(indra_db.cli.content.PmcManager method)

 	(indra_db.cli.content.Pubmed method)

 	populate_support() (in module indra_db.belief)

 	preassembly_updates() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	PrincipalDatabaseManager (class in indra_db.databases)

 	PrincipalSchema (class in indra_db.schemas.principal_schema)

 	PrincipalStats (class in indra_db.cli.dump)

 	process_content() (in module indra_db.reading.read_db)

 	
 PROJECT_NAME

 	indra-db-pa-run command line option

 	Pubmed (class in indra_db.cli.content)

Q

 	
 	Query (class in indra_db.client.readonly.query)

R

 	
 	raw_activity() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	raw_agents() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	raw_mods() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	raw_muts() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	raw_statements() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	raw_stmt_mesh_concepts() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	raw_stmt_mesh_terms() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	raw_stmt_src() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	raw_unique_links() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	read() (in module indra_db.reading.read_db)

 	read_all() (indra_db.cli.reading.BulkReadingManager method)

 	(indra_db.cli.reading.ReadingManager method)

 	read_new() (indra_db.cli.reading.BulkReadingManager method)

 	(indra_db.cli.reading.ReadingManager method)

 	ReadDBError

 	
 	reader_versions (in module indra_db.databases)

 	readers (in module indra_db.databases)

 	reading() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	reading_ref_link() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	reading_updates() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	ReadingManager (class in indra_db.cli.reading)

 	ReadingUpdateError

 	Readonly (class in indra_db.cli.dump)

 	ReadonlyDatabaseManager (class in indra_db.databases)

 	ReadonlySchema (class in indra_db.schemas.readonly_schema)

 	regularize_agent_id() (in module indra_db.util.insert)

 	rejected_statements() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	ResiduePosition (class in indra_db.cli.dump)

 	RlimspManager (class in indra_db.cli.knowledgebase)

 	run_preassembly() (in module indra_db.cli.preassembly)

 	run_reading() (in module indra_db.reading.read_db)

S

 	
 	Schema (class in indra_db.schemas.mixins)

 	select_all() (indra_db.databases.DatabaseManager method)

 	select_all_batched() (indra_db.databases.DatabaseManager method)

 	select_one() (indra_db.databases.DatabaseManager method)

 	select_sample_from_table() (indra_db.databases.DatabaseManager method)

 	set_print_only() (indra_db.client.readonly.query.Query method)

 	shash() (in module indra_db.preassembly.preassemble_db)

 	show_tables() (indra_db.databases.DatabaseManager method)

 	Sif (class in indra_db.cli.dump)

 	SignorManager (class in indra_db.cli.knowledgebase)

 	source_file() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	source_meta() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	
 	SourceCount (class in indra_db.cli.dump)

 	SourceIntersection (class in indra_db.client.readonly.query)

 	SourceQuery (class in indra_db.client.readonly.query)

 	
 SOURCES

 	indra-db-content-run command line option

 	indra-db-kb-run command line option

 	Start (class in indra_db.cli.dump)

 	
 STATE

 	indra-db-dump-list command line option

 	StatementHashMeshId (class in indra_db.cli.dump)

 	submit_curation() (in module indra_db.client.principal.curation)

 	supplement_corpus() (indra_db.preassembly.preassemble_db.DbPreassembler method)

T

 	
 	
 TASK

 	indra-db-content-run command line option

 	indra-db-kb-run command line option

 	indra-db-pa-run command line option

 	indra-db-pipeline-stats command line option

 	indra-db-reading-run command line option

 	indra-db-reading-run-local command line option

 	
 	TasManager (class in indra_db.cli.knowledgebase)

 	text_content() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	text_meta() (indra_db.schemas.readonly_schema.ReadonlySchema method)

 	text_ref() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	to_json() (indra_db.client.readonly.query.Query method)

 	TrrustManager (class in indra_db.cli.knowledgebase)

U

 	
 	Union (class in indra_db.client.readonly.query)

 	update() (indra_db.cli.content.ContentManager method)

 	(indra_db.cli.content.Elsevier method)

 	(indra_db.cli.content.Manuscripts method)

 	(indra_db.cli.content.PmcManager method)

 	(indra_db.cli.content.PmcOA method)

 	(indra_db.cli.content.Pubmed method)

 	
 	updates() (indra_db.schemas.principal_schema.PrincipalSchema method)

 	upload_archives() (indra_db.cli.content.PmcManager method)

 	upload_batch() (indra_db.cli.content.PmcManager method)

 	upload_text_content() (indra_db.cli.content.ContentManager method)

 	UploadError

 	UserQuit

V

 	
 	VirHostNetManager (class in indra_db.cli.knowledgebase)

X

 	
 	xdd_updates() (indra_db.schemas.principal_schema.PrincipalSchema method)

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 INDRA DB

 		
 License and funding

 		
 INDRA Database modules

 		
 The Client

 		
 The Principal Database Client

 		
 The Readonly Client

 		
 Miscellaneous Client APIs (Mostly Deprecated)

 		
 Pipeline Management CLI

 		
 indra-db

 		
 Pipeline CLI Implementations

 		
 Content (indra_db.cli.content)

 		
 Reading (indra_db.cli.reading)

 		
 PreAssembly (indra_db.cli.preassembly)

 		
 Knowledge Bases (indra_db.cli.knowledgebase)

 		
 Static Dumps (indra_db.cli.dump)

 		
 Database Integrated Reading Tools

 		
 The Database Readers (indra_db.reading.read_db)

 		
 The Database Script for Running on AWS (indra_db.reading.read_db_aws)

 		
 A Class to Manage and Monitor AWS Batch Jobs (indra_db.reading.submitter)

 		
 Database Integrated Preassembly Tools

 		
 Database Preassembly (indra_db.preassembly.preassemble_db)

 		
 A Class to Manage and Monitor AWS Batch Jobs (indra_db.preassembly.submitter)

 		
 Database Schemas

 		
 Principal Database Schema (indra_db.schemas.principal_schema)

 		
 Readonly Database Schema (indra_db.schemas.readonly_schema)

 		
 Class Mix-ins (indra_db.schemas.mixins)

 		
 Indexes (indra_db.schemas.indexes)

 		
 Utilities

 		
 Database Session Constructors (indra_db.util.constructors)

 		
 Scripts to Get Content (indra_db.util.content_scripts)

 		
 Distilling Raw Statements (indra_db.util.distill_statements)

 		
 Script to Create a SIF Dump (indra_db.util.dump_sif)

 		
 General Helper Functions (indra_db.util.helpers)

 		
 Routines for Inserting Statements and Content (indra_db.util.insert)

 		
 Some Miscellaneous Modules

 		
 Low Level Database Interface (indra_db.databases)

 		
 Belief Calculator (indra_db.belief)

 		
 INDRA Database REST API

 		
 The Statement Endpoints

 		
 The output formats

 		
 Get Statements by agents (and type): GET api.host/statements/from_agents

 		
 Get a Statement by hash: GET api.host/statements/from_hash/<hash>

 		
 Get Statements from many hashes: POST api.host/statements/from_hashes

 		
 Get Statements from paper ids: POST api.host/statements/from_papers
