
INDRA Database Documentation
Release 1.0.0

P. A. Greene, J. A. Bachman, B. M. Gyori

Nov 23, 2022

CONTENTS

1 Knowledge sources 3
1.1 Daily Readers . 3
1.2 Other Readers . 3
1.3 Other Databases . 4

2 Knowledge Assembly 5

3 Access 7

4 Further INDRA Database documentation 9
4.1 License and funding . 9
4.2 INDRA Database modules . 9

4.2.1 The Client . 9
4.2.2 Pipeline Management CLI . 24
4.2.3 Pipeline CLI Implementations . 36
4.2.4 Database Integrated Reading Tools . 45
4.2.5 Database Integrated Preassembly Tools . 47
4.2.6 Database Schemas . 48
4.2.7 Utilities . 69
4.2.8 Some Miscellaneous Modules . 75

5 INDRA Database REST Service 83
5.1 INDRA Database REST API . 83

5.1.1 The Statement Endpoints . 84
5.1.2 Curation . 86
5.1.3 Usage examples . 87

6 Indices and tables 93

Python Module Index 95

Index 97

i

ii

INDRA Database Documentation, Release 1.0.0

The INDRA (Integrated Network and Dynamical Reasoning Assembler) Database is a framework for creating, main-
taining, and accessing a database of content, readings, and statements. This implementation is currently designed to
work primarily with Amazon Web Services RDS running Postrgres 9+. Used as a backend to INDRA, the INDRA
Database provides a systematic way of scaling the knowledge acquired from other databases, reading, and manual
input, and puts that knowledge at your fingertips through a direct Python client and a REST api.

CONTENTS 1

https://indra-db.readthedocs.io/en/latest/?badge=latest

INDRA Database Documentation, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

KNOWLEDGE SOURCES

The INDRA Database currently integrates and distills knowledge from several different sources, both biology-focused
natural language processing systems and other pre-existing databases

1.1 Daily Readers

We have read all available content, and every day we run the following readers:

• REACH

• Sparser

we read all new content with the following readers:

• Eidos

• ISI

• MTI - used specifically to tag content with topic terms.

we read a limited subset of new content with the following readers:

• TRIPS

on the latest content drawn from:

• PubMed - ~19 million abstracts and ~29 million titles

• PubMed Central - ~2.7 million fulltext

• Elsevier - ~0.7 million fulltext (requires special access)

1.2 Other Readers

We also include more or less static content extracted from the following readers:

• RLIMS-P

3

https://github.com/clulab/reach
https://github.com/ddmcdonald/sparser
https://github.com/clulab/eidos
https://github.com/sgarg87/big_mech_isi_gg
https://ii.nlm.nih.gov/MTI/index.shtml
http://trips.ihmc.us/parser/cgi/drum
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.elsevier.com/
https://research.bioinformatics.udel.edu/rlimsp/

INDRA Database Documentation, Release 1.0.0

1.3 Other Databases

We include the information from these pre-existing databases:

• Pathway Commons database

• BEL Large Corpus

• SIGNOR

• BioGRID

• TAS

• TRRUST

• PhosphoSitePlus

• Causal Biological Networks Database

• VirHostNet

• CTD

• Phospho.ELM

• DrugBank

• CONIB

• CRoG

• DGI

These databases are retrieved primarily using the tools in indra.sources. The statements extracted from all of these
sources are stored and updated in the database.

4 Chapter 1. Knowledge sources

http://pathwaycommons.org/
https://github.com/OpenBEL/
https://signor.uniroma2.it/
https://thebiogrid.org/
https://www.biorxiv.org/content/10.1101/358978v1
https://omictools.com/trrust-tool
https://www.phosphosite.org/
http://www.causalbionet.com/
http://virhostnet.prabi.fr/
http://ctdbase.org/
http://phospho.elm.eu.org/
https://www.drugbank.ca/
https://pharmacome.github.io/conib/
https://github.com/chemical-roles/chemical-roles
https://www.dgidb.org/

CHAPTER

TWO

KNOWLEDGE ASSEMBLY

The INDRA Database uses the powerful internal assembly tools available in INDRA but implemented for large-scale
incremental assembly. The resulting corpus of cleaned and de-duplicated statements, each with fully maintained prove-
nance, is the primary product of the database.

For more details on the internal assembly process of INDRA, see the INDRA documentation.

5

http://indra.readthedocs.io/en/latest/modules/preassembler

INDRA Database Documentation, Release 1.0.0

6 Chapter 2. Knowledge Assembly

CHAPTER

THREE

ACCESS

The content in the database can be accessed by those that created it using the indra_db.client submodule. This
repo also implements a REST API which can be used by those without direct acccess to the database. For access to
our REST API, please contact the authors.

The INDRA database only works for Python 3.6+, though some parts are still compatible with 3.5.

First, install INDRA, then simply clone this repo, and make sure that it is visible in your PYTHONPATH.

The development of INDRA DB is funded under the DARPA Communicating with Computers program (ARO grant
W911NF-15-1-0544).

7

http://indra.readthedocs.io/en/latest/installation.html

INDRA Database Documentation, Release 1.0.0

8 Chapter 3. Access

CHAPTER

FOUR

FURTHER INDRA DATABASE DOCUMENTATION

4.1 License and funding

Copyright (C) 2018, Indra Labs

This code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You may find a copy of the GNU General Public License `here<https://www.gnu.org/licenses/>`_.

The INDRA was developed with funding from ARO grant W911NF-14-1-0397, “Programmatic modelling for reason-
ing across complex mechanisms” under the DARPA Big Mechanism program, and the INDRA database was developed
as an extention of that core project. Work has continued under W911NF-14-1-0391, “Active context” under the DARPA
Communicating with Computers program, and the DARPA Automated Scientific Discovery Framework project.

4.2 INDRA Database modules

4.2.1 The Client

The purpose of the client is to be the gateway for external access to the content of the databases. Here we define high
level access functions for getting data out of the database in a natural way. This is where the queries used by the REST
API are defined, and most users looking to access knowledge on the database should use the client if they can, as it is
heavily optimized.

Our system utilizes 2 databases, one which represents the “ground truth”, as we know it, and is structured naturally for
performing updates on our knowledge; it will always be the most up to date. We also have a “readonly” database that
we used for our outward facing services. This database is optimized for fast queries and the content in it is updated
weekly. Each database has its own set of access tools.

9

INDRA Database Documentation, Release 1.0.0

The Principal Database Client

This is the set of client tools to access the most-nearly ground truth knowledge stored on the principal database.

Access Readings and Text Content (indra_db.client.principal.content)

This defines a simple API to access the content that we store on the database for external purposes.

indra_db.client.principal.content.get_content_by_refs(db, pmid_list=None, trid_list=None,
sources=None, formats=None,
content_type='abstract', unzip=True)

Return content from the database given a list of PMIDs or text ref ids.

Note that either pmid_list OR trid_list must be set, and only one can be set at a time.

Parameters
• db (DatabaseManager) – Reference to the DB to query

• pmid_list (list[str] or None) – A list of pmids. Default is None, in which case
trid_list must be given.

• trid_list (list[int] or None) – A list of text ref ids. Default is None, in which case
pmid list must be given.

• sources (list[str] or None) – A list of sources to include (e.g. ‘pmc_oa’, or
‘pubmed’). Default is None, indicating that all sources will be included.

• formats (list[str]) – A list of the formats to be included (‘xml’, ‘text’). Default is None,
indicating that all formats will be included.

• content_type (str) – Select the type of content to load (‘abstract’ or ‘fulltext’). Note that
not all refs will have any, or both, types of content.

• unzip (Optional[bool]) – If True, the compressed output is decompressed into clear text.
Default: True

Returns
content_dict – A dictionary whose keys are text ref ids, with each value being the the corre-
sponding content.

Return type
dict

indra_db.client.principal.content.get_reader_output(db, ref_id, ref_type='tcid', reader=None,
reader_version=None)

Return reader output for a given text content.

Parameters
• db (DatabaseManager) – Reference to the DB to query

• ref_id (int or str) – The text reference ID whose reader output should be returned

• ref_type (Optional[str]) – The type of ID to look for, options include ‘tcid’ for the
database’s internal unique text content ID, or ‘pmid’, ‘pmcid’, ‘doi, ‘pii’, ‘manuscript_id’
Default: ‘tcid’

• reader (Optional[str]) – The name of the reader whose output is of interest

• reader_version (Optional[str]) – The specific version of the reader

10 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

Returns
reading_results – A dict of reader outputs that match the query criteria, indexed first by text
content id, then by reader.

Return type
dict{dict{list[str]}}

Submit and Retrieve Curations (indra_db.client.principal.curation)

On our services, users have the ability to curate the results we present, indicating whether they are correct or not, and
how they may be incorrect. The API for adding and retrieving that input is defined here.

indra_db.client.principal.curation.get_curations(db=None, **params)
Get all curations for a certain level given certain criteria.

indra_db.client.principal.curation.get_grounding_curations(db=None)
Return a dict of curated groundings from a given database.

Parameters
db (Optional[DatabaseManager]) – A database manager object used to access the database.
If not given, the database configured as primary is used.

Returns
A dict whose keys are raw text strings and whose values are dicts of DB name space to DB ID
mappings corresponding to the curated grounding.

Return type
dict

indra_db.client.principal.curation.submit_curation(hash_val, tag, curator, ip, text=None,
ev_hash=None, source='direct_client',
pa_json=None, ev_json=None, db=None)

Submit a curation for a given preassembled or raw extraction.

Parameters
• hash_val (int) – The hash corresponding to the statement.

• tag (str) – A very short phrase categorizing the error or type of curation.

• curator (str) – The name or identifier for the curator.

• ip (str) – The ip address of user’s computer.

• text (str) – A brief description of the problem.

• ev_hash (int) – A hash of the sentence and other evidence information. Elsewhere referred
to as source_hash.

• source (str) – The name of the access point through which the curation was performed.
The default is ‘direct_client’, meaning this function was used directly. Any higher-level ap-
plication should identify itself here.

• pa_json (Optional[dict]) – The JSON of a preassembled or raw statement that was
curated. If None, we will try to get the pa_json from the database.

• ev_json (Optional[dict]) – The JSON of the evidence that was curated. This cannot be
retrieved from the database if not given.

• db (DatabaseManager) – A database manager object used to access the database.

4.2. INDRA Database modules 11

INDRA Database Documentation, Release 1.0.0

Get Raw Statements (indra_db.client.principal.raw_statements)

Get the raw, uncleaned and un-merged Statements based on agent and type or by paper(s) of origin.

indra_db.client.principal.raw_statements.get_raw_stmt_jsons(clauses=None, db=None,
max_stmts=None, offset=None)

Get Raw Statements from the principle database, given arbitrary clauses.

indra_db.client.principal.raw_statements.get_raw_stmt_jsons_from_agents(agents=None,
stmt_type=None,
db=None,
max_stmts=None,
offset=None)

Get Raw statement jsons from a list of agent refs and Statement type.

indra_db.client.principal.raw_statements.get_raw_stmt_jsons_from_papers(id_list,
id_type='pmid',
db=None,
max_stmts=None,
offset=None)

Get raw statement jsons for a given list of papers.

Parameters
• id_list (list) – A list of ints or strs that are ids of papers of type id_type.

• id_type (str) – Default is ‘pmid’. The type of ids given in id_list, e.g. ‘pmid’, ‘pmcid’,
‘trid’.

• db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local database instance.

Returns
result_dict – A dictionary keyed by id (of id_type) with a list of raw statement json objects as
each value. Ids for which no statements are found will not be included in the dict.

Return type
dict

The Readonly Client

Here are our primary tools intended for retrieving Statements, in particular Pre-Assembled (PA) Statements, from the
readonly database. This is some of the most heavily optimized access code in the repo, and is the backbone of most
external or outward facing applications.

The readonly database, as the name suggests, is designed to take only read requests, and is updated via dump only
once a week. This allows users of our database to access it even as we perform daily updates on the principal database,
without worrying about queries interfering.

12 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

Construct composable queries (indra_db.client.readonly.query)

This is a sophisticated system of classes that can be used to form queires for preassembled statements from the readonly
database.

class indra_db.client.readonly.query.Query(empty=False, full=False)
The core class for all queries; not functional on its own.

copy()

Get a _copy of this query.

invert()

A useful way to get the inversion of a query in order of operations.

When chain operations, ~q is evaluated after all . terms. This allows you to cleanly bypass that issue,
having:

HasReadings().invert().get_statements(ro)

rather than

(~HasReadings()).get_statements()

which is harder to read.

set_print_only(print_only)
Choose to only print the SQL and not execute it.

This is very useful for debugging the SQL queries that are generated.

get_statements(ro=None, limit=None, offset=None, sort_by='ev_count', ev_limit=None,
evidence_filter=None)→ Optional[StatementQueryResult]

Get the statements that satisfy this query.

Parameters
• ro (DatabaseManager) – A database manager handle that has valid Readonly tables built.

• limit (int) – Control the maximum number of results returned. As a rule, unless you are
quite sure the query will result in a small number of matches, you should limit the query.

• offset (int) – Get results starting from the value of offset. This along with limit allows
you to page through results.

• sort_by (str) – Options are currently ‘ev_count’ or ‘belief’. Results will return in order
of the given parameter.

• ev_limit (int) – Limit the number of evidence returned for each statement.

• evidence_filter (None or EvidenceFilter) – If None, no filtering will be applied.
Otherwise, an EvidenceFilter class must be provided.

Returns
result – An object holding the JSON result from the database, as well as the metadata for the
query.

Return type
StatementQueryResult

get_hashes(ro=None, limit=None, offset=None, sort_by='ev_count', with_src_counts=True)→
Optional[QueryResult]

Get the hashes of statements that satisfy this query.

4.2. INDRA Database modules 13

INDRA Database Documentation, Release 1.0.0

Parameters
• ro (DatabaseManager) – A database manager handle that has valid Readonly tables built.

• limit (int) – Control the maximum number of results returned. As a rule, unless you are
quite sure the query will result in a small number of matches, you should limit the query.

• offset (int) – Get results starting from the value of offset. This along with limit allows
you to page through results.

• sort_by (str) – ‘ev_count’ or ‘belief’: select the parameter by which results are sorted.

• with_src_counts (bool) – Choose whether source counts are included with the result
or not. The default is True (included), but the query may be marginally faster with source
counts excluded (False).

Returns
result – An object holding the results of the query, as well as the metadata for the query
definition.

Return type
QueryResult

get_interactions(ro=None, limit=None, offset=None, sort_by='ev_count')→ Optional[QueryResult]
Get the simple interaction information from the Statements metadata.

Each entry in the result corresponds to a single preassembled Statement, distinguished by its hash.

Parameters
• ro (DatabaseManager) – A database manager handle that has valid Readonly tables built.

• limit (int) – Control the maximum number of results returned. As a rule, unless you are
quite sure the query will result in a small number of matches, you should limit the query.

• offset (int) – Get results starting from the value of offset. This along with limit allows
you to page through results.

• sort_by (str) – Options are currently ‘ev_count’ or ‘belief’. Results will return in order
of the given parameter.

get_relations(ro=None, limit=None, offset=None, sort_by='ev_count', with_hashes=False)→
Optional[QueryResult]

Get the agent and type information from the Statements metadata.

Each entry in the result corresponds to a relation, meaning an interaction type, and the names of
the agents involved.

Parameters
• ro (DatabaseManager) – A database manager handle that has valid Readonly tables built.

• limit (int) – Control the maximum number of results returned. As a rule, unless you are
quite sure the query will result in a small number of matches, you should limit the query.

• offset (int) – Get results starting from the value of offset. This along with limit allows
you to page through results.

• sort_by (str) – Options are currently ‘ev_count’ or ‘belief’. Results will return in order
of the given parameter.

• with_hashes (bool) – Default is False. If True, retrieve all the hashes that fit within each
relational grouping.

14 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

get_agents(ro=None, limit=None, offset=None, sort_by='ev_count', with_hashes=False,
complexes_covered=None)→ Optional[QueryResult]

Get the agent pairs from the Statements metadata.

Each entry is simply a pair (or more) of Agents involved in an interaction.

Parameters
• ro (Optional[DatabaseManager]) – A database manager handle that has valid Read-

only tables built.

• limit (Optional[int]) – Control the maximum number of results returned. As a rule,
unless you are quite sure the query will result in a small number of matches, you should
limit the query.

• offset (Optional[int]) – Get results starting from the value of offset. This along with
limit allows you to page through results.

• sort_by (str) – Options are currently ‘ev_count’ or ‘belief’. Results will return in order
of the given parameter.

• with_hashes (bool) – Default is False. If True, retrieve all the hashes that fit within each
agent pair grouping.

• complexes_covered (Optional[set]) – The set of hashes for complexes that you have
already seen and would like skipped.

to_json()→ dict
Get the JSON representation of this query.

classmethod from_simple_json(json_dict)
Generate a proper query from a simplified JSON.

list_component_queries()→ list
Get a list of the query elements included, in no particular order.

build_hash_query(ro, type_queries=None)
[Internal] Build the query for hashes.

is_inverse_of(other)
Check if a query is the exact opposite of another.

class indra_db.client.readonly.query.Intersection(query_list)
The Intersection of multiple queries.

Baring special handling, this is what results from q1 & q2.

NOTE: the inverse of an Intersection is a Union (De Morgans’s Law)

ev_filter()

Get an evidence filter composed of the “and” of sub-query filters.

is_inverse_of(other)
Check if this query is the inverse of another.

class indra_db.client.readonly.query.Union(query_list)
The union of multiple queries.

Baring special handling, this is generally the result of q1 | q2.

NOTE: the inverse of a Union is an Intersection (De Morgans’s Law)

4.2. INDRA Database modules 15

INDRA Database Documentation, Release 1.0.0

ev_filter()

Get an evidence filter composed of the “or” of sub-query filters.

is_inverse_of(other)
Check if this query is the inverse of another.

class indra_db.client.readonly.query.MergeQuery(query_list, *args, **kwargs)
This is the parent of the two merge classes: Intersection and Union.

This class of queries is extremely special, in that the “table” is actually constructed on the fly. This presents
various subtle challenges. Moreover an intersection/union is an expensive process, so I go to great lengths to
minimize its use, making the __init__ methods quite hefty. It is also in Intersections and Unions that full and
empty states are most likely to occur, and in some wonderfully subtle and hard to find ways.

class indra_db.client.readonly.query.HasAgent(agent_id=None, namespace='NAME', role=None,
agent_num=None)

Get Statements that have a particular agent in a particular role.

NOTE: At this time 2 agent queries do NOT necessarily imply that the 2 agents are different. E.g.
`HasAgent("MEK") & HasAgent("MEK")`will get any Statements that have agent with name MEK, not State-
ments with two agents called MEK. This may change in the future, however in the meantime you can get around
this fairly well by specifying the roles:

>>> HasAgent("MEK", role="SUBJECT") & HasAgent("MEK", role="OBJECT")

Or for a more complicated case, consider a query for Statements where one agent is MEK and the other has
namespace FPLX. Naturally any agent labeled as MEK will also have a namespace FPLX (MEK is a famplex
identifier), and in general you will not want to constrain which role is MEK and which is the “other” agent. To
accomplish this you need to use `|`:

>>> (
>>> HasAgent("MEK", role="SUBJECT")
>>> & HasAgent(namespace="FPLX", role="OBJECT")
>>>) | (
>>> HasAgent("MEK", role="OBJECT")
>>> & HasAgent(namespace="FPLX", role="SUBJECT")
>>>)

Parameters
• agent_id (Optional[str]) – The ID string naming the agent, for example ‘ERK’ (FPLX

or NAME) or ‘plx’ (TEXT), and so on. If None, the query must then be constrained by the
namespace. (Default is None)

• namespace (Optional[str]) – By default, this is NAME, indicating the canonical name
of the agent. Other options for namespace include FPLX (FamPlex), CHEBI, CHEMBL,
HGNC, UP (UniProt), TEXT (for raw text mentions), and many more. If you use the names-
pace AUTO, GILDA will be used to try and guess the proper namespace and agent ID. If
agent_id is None, namespace must be specified and must not be NAME, TEXT, or AUTO.

• role (Optional[str]) – Options are “SUBJECT”, “OBJECT”, or “OTHER”. (Default is
None)

• agent_num (Optional[int]) – The regularized position of the agent in the Statement’s
list of agents. (Default is None)

16 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

class indra_db.client.readonly.query.FromMeshIds(mesh_ids: list)
Find Statements whose text sources were given one of a list of MeSH IDs.

This object can be constructed from a list of mixed “D” and “C” type mesh IDs, but for reasons of querying,
those IDs will be separated into two separate classes and a Union of the two classes returned.

Parameters
mesh_ids (list) – A canonical MeSH ID, of the “C” or “D” variety, e.g. “D000135”.

mesh_ids

The immutable tuple of mesh IDs, on their original string form.

Type
tuple

_mesh_type

“C” or “D” indicating which types of IDs are held in this object.

Type
str

_mesh_nums

The mesh IDs converted to integers, stripped of their prefix.

Type
list[int]

ev_filter()

Get an evidence filter to enforce mesh constraints at ev level.

class indra_db.client.readonly.query.HasHash(stmt_hashes)
Find Statements from a list of hashes.

Parameters
stmt_hashes (list or set or tuple) – A collection of integers, where each integer is a
shallow matches key hash of a Statement (frequently simply called “mk_hash” or “hash”)

class indra_db.client.readonly.query.HasSources(sources)
Find Statements that include a set of sources.

For example, find Statements that have support from both medscan and reach.

Parameters
sources (list or set or tuple) – A collection of strings, each string the canonical name
for a source. The result will include statements that have evidence from ALL sources that you
include.

class indra_db.client.readonly.query.HasOnlySource(only_source)
Find Statements that come exclusively from a particular source.

For example, find statements that come only from sparser.

Parameters
only_source (str) – The only source that spawned the statement, e.g. signor, or reach.

class indra_db.client.readonly.query.HasReadings

Find Statements that have readings.

class indra_db.client.readonly.query.HasDatabases

Find Statements that have databases.

4.2. INDRA Database modules 17

INDRA Database Documentation, Release 1.0.0

class indra_db.client.readonly.query.SourceQuery(empty=False, full=False)
The core of all queries that use SourceMeta.

class indra_db.client.readonly.query.SourceIntersection(source_queries)
A special type of intersection between children of SourceQuery.

All SourceQuery queries use the same table, so when doing an intersection it doesn’t make sense to do an actual
intersection operation, and instead simply apply all the filters of each query to build a normal multi- conditioned
query.

is_inverse_of(other)
Check if this query is the inverse of another.

class indra_db.client.readonly.query.HasType(stmt_types, include_subclasses=False)
Find Statements that are one of a collection of types.

For example, you can find Statements that are Phosphorylations or Activations, or you could find all subclasses
of RegulateActivity.

NOTE: when used in an Intersection with other queries, type is handled specially, with each sub query having a
type constraint added to it.

Parameters
• stmt_types (set or list or tuple) – A collection of Strings, where each string is a

class name for a type of Statement. Spelling and capitalization are necessary.

• include_subclasses (bool) – (optional) default is False. If True, each Statement type
given in the list will be expanded to include all of its sub classes.

item_type

alias of str

class indra_db.client.readonly.query.IntrusiveQuery(value_list)
This is the parent of all queries that draw on info in all meta tables.

Thus, when using these queries in an Intersection, they are applied to each sub query separately.

class indra_db.client.readonly.query.HasNumAgents(agent_nums)
Find Statements with any one of a listed number of agents.

For example, HasNumAgents([1,3,4]) will return agents with either 2, 3, or 4 agents (the latter two
mostly being complexes).

NOTE: when used in an Interaction with other queries, the agent numbers are handled specially, with each sub-
query having an agent_count constraint applied to it.

Parameters
agent_nums (tuple) – A list of integers, each indicating a number of agents.

item_type

alias of int

class indra_db.client.readonly.query.HasNumEvidence(evidence_nums)
Find Statements with one of a given number of evidence.

For example, HasNumEvidence([2,3,4]) will return Statements that have either 2, 3, or 4 evidence.

NOTE: when used in an Interaction with other queries, the evidence count is handled specially, with each sub-
query having an ev_count constraint added to it.

18 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

Parameters
evidence_nums (tuple) – A list of numbers greater than 0, each indicating a number of evi-
dence.

item_type

alias of int

class indra_db.client.readonly.query.FromPapers(paper_list)
Find Statements that have evidence from particular papers.

Parameters
paper_list (list[(<id_type>, <paper_id>)]) – A list of tuples, where each tuple indi-
cates and id-type (e.g. ‘pmid’) and an id value for a particular paper.

class indra_db.client.readonly.query.EvidenceFilter(filters=None, joiner='and')
Object for handling filtering of evidence.

We need to be able to perform logical operations between evidence to handle important cases:

• HasSource(['reach']) & FromMeshIds(['D0001']): we might reasonably want to filter evidence
for the second subquery but not the first.

• HasOnlySource(['reach']) & FromMeshIds(['D00001']): Here we would likely want to filter the
evidence for both sub queries.

• HasOnlySource(['reach']) | FromMeshIds(['D000001']): It is not clear what this even means
(its purpose) or what we’d do for evidence filtering when the original statements are or’ed

• HasDatabases() & FromMeshIds(['D000001']): Here you COULDN’T perform an & on the evi-
dence, because the two sources are mutually exclusive (only readings connect to mesh annotations). How-
ever it could make sense you would want to do an “or” between the evidence, so the evidence is either from
a database or from a mesh annotated document.

Both “filter all the evidence” and “filter none of the evidence” should definitely be options. Although “Filter for
all” might run into uses with the “HasDatabase and FromMeshIds” scenario. I think no evidence filter should be
the default, and if you attempt a bogus “filter all evidence” (as with that scenario) you get an error.

class indra_db.client.readonly.query.FromAgentJson(agent_json, stmt_type=None, hashes=None)
A Very special type of query that is used for digging into results.

class indra_db.client.readonly.query.HasEvidenceBound(evidence_bounds: Iterable[Union[str,
Bound]])

Find Statements that fit given evidence bounds.

A list of bounds will be combined using the logic of “or”, so [“<1”, “>3”] will return Statements that are _either_
less than 1 OR greater than 3.

Parameters
evidence_bounds – An iterable containing bounds for the evidence support of Statements to
be returned, such as Bound(”< 10”) or simply “< 10” (the string will be parsed into a Bound
object, if possible).

4.2. INDRA Database modules 19

INDRA Database Documentation, Release 1.0.0

Miscellaneous Client APIs (Mostly Deprecated)

There are some, generally archaic, client functions which use both readonly and principal resources. I make no guar-
antee that these will work.

Get Datasets (indra_db.client.datasets)

An early attempt at something very like the indra_db.client.readonly.interactions approach to getting su-
perficial data out of the database.

indra_db.client.datasets.export_relation_dict_to_tsv(relation_dict, out_base, out_types=None)
Export a relation dict (from get_relation_dict) to a tsv.

Available output types are:

• “full_tsv” : get a tsv with directed pairs of entities (e.g. HGNC symbols), the type of relation (e.g. Phos-
phorylation) and the hash of the preassembled statement. Columns are agent_1, agent_2 (where agent_1
affects agent_2), type, hash.

• “short_tsv” : like the above, but without the hashes, so only one instance of each pair and type trio occurs.
However, the information cannot be traced. Columns are agent_1, agent_2, type, where agent_1 affects
agent_2.

• “pairs_tsv” : like the above, but without the relation type. Similarly, each row is unique. In addition, the
agents are undirected. Thus this is purely a list of pairs of related entities. The columns are just agent_1
and agent_2, where nothing is implied by the ordering.

Parameters
• relation_dict (dict) – This should be the output from get_relation_dict, or something

equivalently constructed.

• out_base (str) – The base-name for the output files.

• out_types (list[str]) – A list of the types of tsv to output. See above for details.

indra_db.client.datasets.get_relation_dict(db, groundings=None, with_evidence_count=False,
with_support_count=False)

Get a dictionary of entity interactions from the database.

Use only metadata from the database to rapidly get simple interaction data. This is much faster than handling the
full Statement jsons, while providing some basic valuable functionality.

Parameters
• db (DatabaseManager instance) – An instance of a database manager.

• groundings (list[str] or None) – Select which types of grounding namespaces to in-
clude, e.g. HGNC, or FPLX, or both. Only agent refs with these groundings will be selected.
If None, only HGNC is used.

• with_evidence_count (bool) – Default is False. If True, an additional query will be made
for each statement to get the count of supporting evidence, which is a useful proxy for belief.

• with_support_count (bool) – Default is False. Like with_evidence_count, except the
number of supporting statements is counted.

20 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

indra_db.client.datasets.get_statement_essentials(clauses, count=1000, db=None,
preassembled=True)

Get the type, agents, and id data for the specified statements.

This function is useful for light-weight searches of basic mechanistic information, without the need to follow as
many links in the database to populate the Statement objects.

To get full statements, use get_statements.

Parameters
• clauses (list) – list of sqlalchemy WHERE clauses to pass to the filter query.

• count (int) – Number of statements to retrieve and process in each batch.

• db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local database instance.

• preassembled (bool) – If true, statements will be selected from the table of pre-assembled
statements. Otherwise, they will be selected from the raw statements. Default is True.

Returns
(uuid, sid, hash, type, (agent_1, agent_2, . . .)).

Return type
A list of tuples containing

Get Statements (indra_db.client.statements)

The first round of tools written to get Statements out of the database, utilizing far too many queries and taking absurdly
long to complete. Most of their functions have been outmoded, with the exception of getting PA Statements from the
principal database, which (as of this writing) has yet to be implemented.

indra_db.client.statements.get_evidence(pa_stmt_list, db=None, fix_refs=True, use_views=True)
Fill in the evidence for a list of pre-assembled statements.

Parameters
• pa_stmt_list (list[Statement]) – A list of unique statements, generally drawn from

the database pa_statement table (via get_statemetns).

• db (DatabaseManager instance or None) – An instance of a database manager. If
None, defaults to the “primary” database, as defined in the db_config.ini file in .config/indra.

• fix_refs (bool) – The paper refs within the evidence objects are not populated in the
database, and thus must be filled using the relations in the database. If True (default), the
pmid field of each Statement Evidence object is set to the correct PMIDs, or None if no
PMID is available. If False, the pmid field defaults to the value populated by the reading
system.

Return type
None - modifications are made to the Statements “in-place”.

indra_db.client.statements.get_statements(clauses, count=1000, do_stmt_count=False, db=None,
preassembled=True, with_support=False, fix_refs=True,
with_evidence=True)

Select statements according to a given set of clauses.

Parameters
• clauses (list) – list of sqlalchemy WHERE clauses to pass to the filter query.

4.2. INDRA Database modules 21

INDRA Database Documentation, Release 1.0.0

• count (int) – Number of statements to retrieve and process in each batch.

• do_stmt_count (bool) – Whether or not to perform an initial statement counting step to
give more meaningful progress messages.

• db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local database instance.

• preassembled (bool) – If true, statements will be selected from the table of pre-assembled
statements. Otherwise, they will be selected from the raw statements. Default is True.

• with_support (bool) – Choose whether to populate the supports and supported_by list
attributes of the Statement objects. General results in slower queries.

• with_evidence (bool) – Choose whether or not to populate the evidence list attribute of
the Statements. As with with_support, setting this to True will take longer.

• fix_refs (bool) – The paper refs within the evidence objects are not populated in the
database, and thus must be filled using the relations in the database. If True (default), the
pmid field of each Statement Evidence object is set to the correct PMIDs, or None if no
PMID is available. If False, the pmid field defaults to the value populated by the reading
system.

Return type
list of Statements from the database corresponding to the query.

indra_db.client.statements.get_statements_by_gene_role_type(agent_id=None,
agent_ns='HGNC-SYMBOL',
role=None, stmt_type=None,
count=1000, db=None,
do_stmt_count=False,
preassembled=True, fix_refs=True,
with_evidence=True,
with_support=False,
essentials_only=False)

Get statements from the DB by stmt type, agent, and/or agent role.

WARNING: This function will be removed in the future. Please look to indra_db.client.readonly.query and
indra_db.client.principal.raw_statements for alternatives.

Parameters
• agent_id (str) – String representing the identifier of the agent from the given namespace.

Note: if the agent namespace argument, agent_ns, is set to ‘HGNC-SYMBOL’, this func-
tion will treat agent_id as an HGNC gene symbol and perform an internal lookup of the
corresponding HGNC ID. Default is ‘HGNC-SYMBOL’.

• agent_ns (str) – Namespace for the identifier given in agent_id.

• role (str) – String corresponding to the role of the agent in the statement. Options are
‘SUBJECT’, ‘OBJECT’, or ‘OTHER’ (in the case of Complex, SelfModification, and Active-
Form Statements).

• stmt_type (str) – Name of the Statement class.

• count (int (DEPRECATED)) – Number of statements to retrieve in each batch (passed to
get_statements()).

• db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local databse instance.

22 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

• do_stmt_count (bool (DEPRECATED)) – Whether or not to perform an initial statement
counting step to give more meaningful progress messages.

• preassembled (bool (DEPRECATED)) – If true, statements will be selected from the ta-
ble of pre-assembled statements. Otherwise, they will be selected from the raw statements.
Default is True.

• with_support (bool (DEPRECATED)) – Choose whether to populate the supports and
supported_by list attributes of the Statement objects. Generally results in slower queries.
DEFAULT IS CURRENTLY False.

• with_evidence (bool) – Choose whether or not to populate the evidence list attribute of
the Statements. As with with_support, setting this to True will take longer.

• fix_refs (bool (DEPRECATED)) – The paper refs within the evidence objects are not pop-
ulated in the database, and thus must be filled using the relations in the database. If True
(default), the pmid field of each Statement Evidence object is set to the correct PMIDs, or
None if no PMID is available. If False, the pmid field defaults to the value populated by the
reading system.

• essentials_only (bool (DEPRECATED)) – Default is False. If True, retrieve only some
metadata regarding the statements. Implicitly with_support, with_evidence, fix_refs, and
do_stmt_count are all False, as none of the relevant features apply.

Returns
• if essentials_only is False – list of Statements from the database corresponding to the query.

• else – list of tuples containing basic data from the statements.

indra_db.client.statements.get_statements_by_paper(id_list, id_type='pmid', db=None,
preassembled=True)

Get the statements from a list of paper ids.

WARNING: This function will be removed in the future. Please look to indra_db.client.readonly.query and
indra_db.client.principal.raw_statements for alternatives.

Parameters
• id_list (list or set) – A list of ints or strs that are ids of papers of type id_type.

• id_type (str) – The type of id used (default is pmid). Options include pmid, pmcid, doi,
pii, url, or manuscript_id. Note that pmid is generally the best means of getting a paper.

• db (DatabaseManager) – Optionally specify a database manager that attaches to something
besides the primary database, for example a local databse instance.

• preassembled (bool) – If True, statements will be selected from the table of pre-assembled
statements. Otherwise, they will be selected from the raw statements. Default is True.

Returns
stmt_dict – A dict of Statements from the database keyed the paper id given. Papers that yielded
no statements are not included. If preassembled is True, there may be ids which were not present
in the original dataset, and there may be a key None for statements that has evidence from refs
that did not have that id_type of reference.

Return type
dict

indra_db.client.statements.get_statements_from_hashes(statement_hashes, preassembled=True,
db=None, **kwargs)

Retrieve statement objects given only statement hashes.

4.2. INDRA Database modules 23

INDRA Database Documentation, Release 1.0.0

WARNING: This function will be removed in the future. Please look to indra_db.client.readonly.query and
indra_db.client.principal.raw_statements for alternatives.

indra_db.client.statements.get_support(statements, db=None, recursive=False)
Populate the supports and supported_by lists of the given statements.

4.2.2 Pipeline Management CLI

This module creates a CLI for managing the pipelines used to update content and knowledge in the database, and move
or transform that knowledge on a regular basis.

indra-db

INDRA Database Infrastructure CLI

The INDRA Database is both a physical database and an infrastructure for managing and updating the content of that
physical database. This CLI is used for executing these management commands.

indra-db [OPTIONS] COMMAND [ARGS]...

content

Manage the text refs and content on the database.

indra-db content [OPTIONS] COMMAND [ARGS]...

list

List the current knowledge sources and their status.

indra-db content list [OPTIONS]

Options

-l, --long

Include a list of the most recently added content for all source types.

run

Upload/update text refs and content on the database.

Usage tasks are:
- upload: use if the knowledge bases have not yet been added.
- update: if they have been added, but need to be updated.

The currently available sources are “pubmed”, “pmc_oa”, and “manuscripts”.

24 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

indra-db content run [OPTIONS] {upload|update}
[[pubmed|pmc_oa|manuscripts]]...

Options

-c, --continuing

Continue uploading or updating, picking up where you left off.

-d, --debug

Run with debugging level output.

Arguments

TASK

Required argument

SOURCES

Optional argument(s)

dump

Manage the data dumps from Principal to files and Readonly.

indra-db dump [OPTIONS] COMMAND [ARGS]...

hierarchy

Dump hierarchy of Dumper classes to S3.

indra-db dump hierarchy [OPTIONS]

list

List existing dumps and their s3 paths.

State options:
- “started”: get all dumps that have started (have “start.json” in them).
- “done”: get all dumps that have finished (have “end.json” in them).
- “unfinished”: get all dumps that have started but not finished.

If no option is given, all dumps will be listed.

indra-db dump list [OPTIONS] [[started|done|unfinished]]

4.2. INDRA Database modules 25

INDRA Database Documentation, Release 1.0.0

Arguments

STATE

Optional argument

load-readonly

Load the readonly database with readonly schema dump.

indra-db dump load-readonly [OPTIONS]

Options

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

--no-redirect-to-principal

If given, the lambda function serving the REST API will notbe modified to redirect from the readonly database
to theprincipal database while readonly is being loaded.

print-database-stats

Print the summary counts for the content on the database.

indra-db dump print-database-stats [OPTIONS]

run

Run dumps.

indra-db dump run [OPTIONS] COMMAND [ARGS]...

all

Generate new dumps and list existing dumps.

indra-db dump run all [OPTIONS]

Options

-c, --continuing

Indicate whether you want the job to continue building an existing dump corpus, or if you want to start a new
one.

-d, --dump-only

Only generate the dumps on s3.

26 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

-l, --load-only

Only load a readonly dump from s3 into the given readonly database.

--delete-existing

Delete and restart an existing readonly schema in principal.

--no-redirect-to-principal

If given, the lambda function serving the REST API will notbe modified to redirect from the readonly database
to theprincipal database while readonly is being loaded.

belief

Dump a dict of belief scores keyed by hash

indra-db dump run belief [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

end

Mark the dump as complete.

indra-db dump run end [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

4.2. INDRA Database modules 27

INDRA Database Documentation, Release 1.0.0

full-pa-json

Dumps all statements found in FastRawPaLink as jsonl

indra-db dump run full-pa-json [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

full-pa-stmts

Dumps all statements found in FastRawPaLink as a pickle

indra-db dump run full-pa-stmts [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

28 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

mti-mesh-ids

Dump a mapping from Statement hashes to MeSH terms.

indra-db dump run mti-mesh-ids [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

principal-statistics

Dump a CSV of extensive counts of content in the principal database.

indra-db dump run principal-statistics [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

4.2. INDRA Database modules 29

INDRA Database Documentation, Release 1.0.0

readonly

Generate the readonly schema, and dump it using pgdump.

indra-db dump run readonly [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

res-pos

Dumps a dict of dicts with residue/position data from Modifications

indra-db dump run res-pos [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

30 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

sif

Dumps a pandas dataframe of preassembled statements

indra-db dump run sif [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

source-count

Dumps a dict of dicts with source counts per source api per statement

indra-db dump run source-count [OPTIONS]

Options

-c, --continuing

Continue a partial dump, if applicable.

-d, --date-stamp <date_stamp>

Provide a datestamp with which to mark this dump. The default is same as the start dump from which this is
built.

-f, --force

Run the build even if the dump file has already been produced.

--from-dump <from_dump>

Indicate a specific start dump from which to build. The default is the most recent.

4.2. INDRA Database modules 31

INDRA Database Documentation, Release 1.0.0

start

Initialize the dump on s3, marking the start datetime of the dump.

indra-db dump run start [OPTIONS]

Options

-c, --continuing

Add this flag to only create a new start if an unfinished start does not already exist.

kb

Manage the Knowledge Bases used by the database.

indra-db kb [OPTIONS] COMMAND [ARGS]...

list

List the knowledge sources and their status.

indra-db kb list [OPTIONS]

run

Upload/update the knowledge bases used by the database.

Usage tasks are:
- upload: use if the knowledge bases have not yet been added.
- update: if they have been added, but need to be updated.

Specify which knowledge base sources to update by their name, e.g. “Pathway Commons” or “pc”. If not specified, all
sources will be updated.

indra-db kb run [OPTIONS] {upload|update} [SOURCES]...

Arguments

TASK

Required argument

SOURCES

Optional argument(s)

32 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

pa

Manage the preassembly pipeline.

indra-db pa [OPTIONS] COMMAND [ARGS]...

list

List the latest updates for each type of Statement.

indra-db pa list [OPTIONS]

Options

-r, --with-raw

Include the latest datetimes for raw statements of each type. This will take much longer.

run

Manage the indra_db preassembly.

Tasks:
- “create”: populate the pa_statements table for the first time (this

requires that the table be empty).
- “update”: update the existing content in pa_statements with the latest

from raw statements.

A project name is required to tag the AWS instances with a “project” tag.

indra-db pa run [OPTIONS] {create|update} [PROJECT_NAME]

Arguments

TASK

Required argument

PROJECT_NAME

Optional argument

4.2. INDRA Database modules 33

INDRA Database Documentation, Release 1.0.0

pipeline-stats

Manage the pipeline stats gathered on s3.

All major upload and update pipelines have basic timeing and success-failure stats gather on them using the
DataGatherer class wrapper.

These stats are displayed on the /monitor endpoint of the database service.

Tasks are:
- gather: gather the individual job JSONs into an aggregated file.

indra-db pipeline-stats [OPTIONS] {gather}

Arguments

TASK

Required argument

reading

Manage the reading jobs.

indra-db reading [OPTIONS] COMMAND [ARGS]...

list

List the readers and their most recent runs.

indra-db reading list [OPTIONS]

run

Manage the the reading of text content on AWS.

Tasks:
- “all”: Read all the content available.
- “new”: Read only the new content that has not been read.

indra-db reading run [OPTIONS] {all|new}

34 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

Options

-b, --buffer <buffer>

Set the number of buffer days to read prior to the most recent update. The default is 1 day.

--project-name <project_name>

Set the project name to be different from the config default.

Arguments

TASK

Required argument

run-local

Run reading locally, save the results on the database.

Tasks:
- “all”: Read all the content available.
- “new”: Read only the new content that has not been read.

indra-db reading run-local [OPTIONS] {all|new}

Options

-b, --buffer <buffer>

Set the number of buffer days to read prior to the most recent update. The default is 1 day.

-n, --num-procs <num_procs>

Select the number of processors to use.

Arguments

TASK

Required argument

xdd

Manage xDD runs.

indra-db xdd [OPTIONS] COMMAND [ARGS]...

4.2. INDRA Database modules 35

INDRA Database Documentation, Release 1.0.0

run

Process the latest outputs from xDD.

indra-db xdd run [OPTIONS]

4.2.3 Pipeline CLI Implementations

Content (indra_db.cli.content)

The Content CLI manages the text content that is stored in the database. A parent class is defined, and managers
for different sources (e.g. PubMed) can be defined by inheriting from this parent. This file is also used as the shell
command to run updates of the content.

exception indra_db.cli.content.UploadError

class indra_db.cli.content.ContentManager

Abstract class for all upload/update managers.

This abstract class provides the api required for any object that is used to manage content between the database
and the content.

upload_text_content(db, data)
Insert text content into the database using COPY.

make_text_ref_str(tr)
Make a string from a text ref using tr_cols.

add_to_review(desc, msg)
Add an entry to the review document.

filter_text_refs(db, tr_data_set, primary_id_types=None)
Try to reconcile the data we have with what’s already on the db.

Note that this method is VERY slow in general, and therefore should be avoided whenever possible.

The process can be sped up considerably by multiple orders of magnitude if you specify a limited set of id
types to query to get text refs. This does leave some possibility of missing relevant refs.

classmethod get_latest_update(db)
Get the date of the latest update.

populate(db)
A stub for the method used to initially populate the database.

update(db)
A stub for the method used to update the content on the database.

class indra_db.cli.content.Pubmed(*args, categories=None, tables=None, max_annotations=500000,
**kwargs)

Manager for the pubmed/medline content.

For relevant updates from NCBI on the managemetn and upkeep of the PubMed Abstract FTP server, see here:

https://www.nlm.nih.gov/databases/download/pubmed_medline.html

36 Chapter 4. Further INDRA Database documentation

https://www.nlm.nih.gov/databases/download/pubmed_medline.html

INDRA Database Documentation, Release 1.0.0

static fix_doi(doi)
Sometimes the doi is doubled (no idea why). Fix it.

load_annotations(db, tr_data)
Load annotations into the database.

load_text_refs(db, tr_data, update_existing=False)
Sanitize, update old, and upload new text refs.

iter_contents(archives=None)
Iterate over the files in the archive, yielding ref and content data.

Parameters
archives (Optional[Iterable[str]]) – The names of the archive files from the FTP
server to processes. If None, all available archives will be iterated over.

Yields
• label (tuple) – A key representing the particular XML: (XML File Name, Entry Number,

Total Entries)

• text_ref_dict (dict) – A dictionary containing the text ref information.

• text_content_dict (dict) – A dictionary containing the text content information.

load_files(db, files, continuing=False, carefully=False, log_update=True)
Load the files in subdirectory indicated by dirname.

dump_annotations(db)
Dump all the annotations that have been saved so far.

populate(db, continuing=False)
Perform the initial input of the pubmed content into the database.

Parameters
• db (indra.db.DatabaseManager instance) – The database to which the data will be

uploaded.

• continuing (bool) – If true, assume that we are picking up after an error, or otherwise
continuing from an earlier process. This means we will skip over source files contained in
the database. If false, all files will be read and parsed.

update(db)
Update the contents of the database with the latest articles.

class indra_db.cli.content.PmcManager(*args, **kwargs)
Abstract class for uploaders of PMC content: PmcOA and Manuscripts.

update(db)
A stub for the method used to update the content on the database.

static get_missing_pmids(db, tr_data)
Try to get missing pmids using the pmc client.

filter_text_content(db, tc_data)
Filter the text content to identify pre-existing records.

upload_batch(db, tr_data, tc_data)
Add a batch of text refs and text content to the database.

4.2. INDRA Database modules 37

INDRA Database Documentation, Release 1.0.0

get_data_from_xml_str(xml_str, filename)
Get the data out of the xml string.

get_license(pmcid)
Get the license for this pmcid.

download_archive(archive, continuing=False)
Download the archive.

iter_xmls(archives=None, continuing=False, pmcid_set=None)
Iterate over the xmls in the given archives.

Parameters
• archives (Optional[Iterable[str]]) – The names of the archive files from the FTP

server to processes. If None, all available archives will be iterated over.

• continuing (Optional[Bool]) – If True, look for locally saved archives to parse, saving
the time of downloading.

• pmcid_set (Optional[set[str]]) – A set of PMCIDs whose content you want returned
from each archive. Many archives are massive repositories with 10s of thousands of papers
in each, and only a fraction may need to be returned. Extracting and processing XMLs can
be time consuming, so skipping those you don’t need can really pay off!

Yields
• label (Tuple) – A key representing the particular XML: (Archive Name, Entry Number,

Total Entries)

• xml_name (str) – The name of the XML file.

• xml_str (str) – The extracted XML string.

iter_contents(archives=None, continuing=False, pmcid_set=None)
Iterate over the files in the archive, yielding ref and content data.

Parameters
• archives (Optional[Iterable[str]]) – The names of the archive files from the FTP

server to processes. If None, all available archives will be iterated over.

• continuing (Optional[Bool]) – If True, look for locally saved archives to parse, saving
the time of downloading.

• pmcid_set (Optional[set[str]]) – A set of PMCIDs whose content you want returned
from each archive. Many archives are massive repositories with 10s of thousands of papers
in each, and only a fraction may need to be returned. Extracting and processing XMLs can
be time consuming, so skipping those you don’t need can really pay off!

Yields
• label (tuple) – A key representing the particular XML: (Archive Name, Entry Number,

Total Entries)

• text_ref_dict (dict) – A dictionary containing the text ref information.

• text_content_dict (dict) – A dictionary containing the text content information.

upload_archives(db, archives=None, continuing=False, pmcid_set=None, batch_size=10000)
Do the grunt work of downloading and processing a list of archives.

Parameters

38 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

• db (PrincipalDatabaseManager) – A handle to the principal database.

• archives (Optional[Iterable[str]]) – An iterable of archive names from the FTP
server.

• continuing (bool) – If True, best effort will be made to avoid repeating work already
done using some cached files and downloaded archives. If False, it is assumed the caches
are empty.

• pmcid_set (set[str]) – A set of PMC Ids to include from this list of archives.

• batch_size (Optional[int]) – Default is 10,000. The number of pieces of content to
submit to the database at a time.

populate(db, continuing=False)
Perform the initial population of the pmc content into the database.

Parameters
• db (indra.db.DatabaseManager instance) – The database to which the data will be

uploaded.

• continuing (bool) – If true, assume that we are picking up after an error, or otherwise
continuing from an earlier process. This means we will skip over source files contained in
the database. If false, all files will be read and parsed.

Returns
completed – If True, an update was completed. Othewise, the updload was aborted for some
reason, often because the upload was already completed at some earlier time.

Return type
bool

get_pmcid_file_dict()

Get a dict keyed by PMCID mapping them to file names.

get_csv_files(path)
Get a list of CSV files from the FTP server.

class indra_db.cli.content.PmcOA(*args, **kwargs)
ContentManager for the pmc open access content.

For further details on the API, see the parent class: PmcManager.

get_license(pmcid)
Get the license for this pmcid.

get_file_data()

Retrieve the metadata provided by the FTP server for files.

get_archives_after_date(min_date)
Get the names of all single-article archives after the given date.

update(db)
A stub for the method used to update the content on the database.

find_all_missing_pmcids(db)
Find PMCIDs available from the FTP server that are not in the DB.

4.2. INDRA Database modules 39

INDRA Database Documentation, Release 1.0.0

upload_all_missing_pmcids(db, archives_to_skip=None)
This is a special case of update where we upload all missing PMCIDs instead of a regular incremental
update.

Parameters
• db (indra.db.DatabaseManager instance) – The database to which the data will be

uploaded.

• archives_to_skip (list[str] or None) – A list of archives to skip. Processing each
archive is time-consuming, so we can skip some archives if we have already processed
them. Note that if 100% of the articles from a given archive are already in the database, it
will be skipped automatically; this parameter is only used to skip archives that have some
articles that could not be uploaded (e.g. because of text ref conflicts, etc.).

class indra_db.cli.content.Manuscripts(*args, **kwargs)
ContentManager for the pmc manuscripts.

For further details on the API, see the parent class: PmcManager.

get_license(pmcid)
Get the license for this pmcid.

get_file_data()

Retrieve the metadata provided by the FTP server for files.

get_tarname_from_filename(fname)
Get the name of the tar file based on the file name (or a pmcid).

enrich_textrefs(db)
Method to add manuscript_ids to the text refs.

update(db)
Add any new content found in the archives.

Note that this is very much the same as populating for manuscripts, as there are no finer grained means of
getting manuscripts than just looking through the massive archive files. We do check to see if there are any
new listings in each files, minimizing the amount of time downloading and searching, however this will in
general be the slowest of the update methods.

The continuing feature isn’t implemented yet.

class indra_db.cli.content.Elsevier(*args, **kwargs)
Content manager for maintaining content from Elsevier.

populate(db, n_procs=1, continuing=False)
Load all available elsevier content for refs with no pmc content.

update(db, n_procs=1, buffer_days=15)
Load all available new elsevier content from new pmids.

40 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

Reading (indra_db.cli.reading)

The Reading CLI handles the reading of the text contend and the processing of those readings into statements. As with
Content CLI, different reading pipelines can be handled by defining children of a parent class.

exception indra_db.cli.reading.ReadingUpdateError

class indra_db.cli.reading.ReadingManager(reader_names, buffer_days=1, only_unread=False)
Abstract class for managing the readings of the database.

Parameters
• reader_names (lsit [str]) – A list of the names of the readers to be used in a given run

of reading.

• buffer_days (int) – The number of days before the previous update/initial upload to look
for “new” content to be read. This prevents any issues with overlaps between the content
upload pipeline and the reading pipeline.

• only_unread (bool) – Only read papers that have not been read (making the determination
can be expensive).

static get_latest_updates(db)
Get the date of the latest update.

read_all(db, reader_name)
Perform an initial reading all content in the database (populate).

This must be defined in a child class.

read_new(db, reader_name)
Read only new content (update).

This must be defined in a child class.

class indra_db.cli.reading.BulkReadingManager(reader_names, buffer_days=1, only_unread=False)
An abstract class which defines methods required for reading in bulk.

This takes exactly the parameters used by ReadingManager.

read_all(db, reader_name)
Read everything available on the database.

read_new(db, reader_name)
Update the readings and raw statements in the database.

class indra_db.cli.reading.BulkAwsReadingManager(*args, **kwargs)
This is the reading manager when updating using AWS Batch.

This takes all the parameters used by BulkReadingManager, and in addition:

Parameters
project_name (str) – You can select a name for the project for which this reading is being
run. This name has a default value set in your config file. The batch jobs used in reading will be
tagged with this project name, for accounting purposes.

class indra_db.cli.reading.BulkLocalReadingManager(*args, **kwargs)
This is the reading manager to be used when running reading locally.

This takes all the parameters used by BulkReadingManager, and in addition:

Parameters

4.2. INDRA Database modules 41

INDRA Database Documentation, Release 1.0.0

• n_proc (int) – The number of processed to dedicate to reading. Note the some of the
readers (e.g. REACH) do not always obey these restrictions.

• verbose (bool) – If True, more detailed logs will be printed. Default is False.

PreAssembly (indra_db.cli.preassembly)

The Preassembly CLI manages the preassembly pipeline, running deploying preassembly jobs to Batch.

indra_db.cli.preassembly.list_last_updates(db)
Return a dict of the most recent updates for each statement type.

indra_db.cli.preassembly.list_latest_raw_stmts(db)
Return a dict of the most recent new raw statement for each type.

indra_db.cli.preassembly.run_preassembly(mode, project_name)
Construct a submitter and begin submitting jobs to Batch for preassembly.

This function will determine which statement types need to be updated and how far back they go, and will create
the appropriate PreassemblySubmitter instance, and run the jobs with pre-set parameters on statement types
that need updating.

Parameters
project_name (str) – This name is used to gag the various AWS resources used for accounting
purposes.

Knowledge Bases (indra_db.cli.knowledgebase)

The INDRA Databases also derives much of its knowledge from external databases and other resources not extracted
from plain text, referred to in this repo as “knowledge bases”, so as to avoid the ambiguity of “database”. This CLI
handles the updates of those knowledge bases, each of which requires different handling.

class indra_db.cli.knowledgebase.TasManager

This manager handles retrieval and processing of the TAS dataset.

class indra_db.cli.knowledgebase.CBNManager(archive_url=None)
This manager handles retrieval and processing of CBN network files

class indra_db.cli.knowledgebase.HPRDManager

class indra_db.cli.knowledgebase.SignorManager

class indra_db.cli.knowledgebase.BiogridManager

class indra_db.cli.knowledgebase.BelLcManager

class indra_db.cli.knowledgebase.PathwayCommonsManager(*args, **kwargs)

class indra_db.cli.knowledgebase.RlimspManager

class indra_db.cli.knowledgebase.TrrustManager

class indra_db.cli.knowledgebase.PhosphositeManager

class indra_db.cli.knowledgebase.CTDManager

class indra_db.cli.knowledgebase.VirHostNetManager

42 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

class indra_db.cli.knowledgebase.PhosphoElmManager

class indra_db.cli.knowledgebase.DrugBankManager

Static Dumps (indra_db.cli.dump)

This handles the generation of static dumps, including the readonly database from the principal database.

indra_db.cli.dump.list_dumps(started=None, ended=None)
List all dumps, optionally filtered by their status.

Parameters
• started (Optional[bool]) – If True, find dumps that have started. If False, find dumps

that have NOT been started. If None, do not filter by start status.

• ended (Optional[bool]) – The same as started, but checking whether the dump is ended
or not.

Returns
Each S3Path object contains the bucket and key prefix information for a set of dump files, e.g.

[S3Path(bigmech, indra-db/dumps/2020-07-16/),
S3Path(bigmech, indra-db/dumps/2020-08-28/), S3Path(bigmech, indra-
db/dumps/2020-09-18/), S3Path(bigmech, indra-db/dumps/2020-11-12/),
S3Path(bigmech, indra-db/dumps/2020-11-13/)]

Return type
list of S3Path objects

indra_db.cli.dump.get_latest_dump_s3_path(dumper_name)
Get the latest version of a dump file by the given name.

Searches dumps that have already been started and gets the full S3 file path for the latest version of the dump of
that type (e.g. “sif”, “belief”, “source_count”, etc.)

Parameters
dumper_name (str) – The standardized name for the dumper classes defined in this module,
defined in the name class attribute of the dumper object. E.g., the standard dumper name “sif”
can be obtained from Sif.name.

Return type
Union[S3Path, None]

exception indra_db.cli.dump.DumpOrderError

class indra_db.cli.dump.Start(*args, **kwargs)
Initialize the dump on s3, marking the start datetime of the dump.

load(dump_path)
Load manifest from the Start of the given dump path.

classmethod from_date(dump_date: datetime)
Select a dump based on the given datetime.

class indra_db.cli.dump.PrincipalStats(start=None, date_stamp=None, **kwargs)
Dump a CSV of extensive counts of content in the principal database.

4.2. INDRA Database modules 43

INDRA Database Documentation, Release 1.0.0

class indra_db.cli.dump.Belief(start=None, date_stamp=None, **kwargs)
Dump a dict of belief scores keyed by hash

class indra_db.cli.dump.Readonly(start=None, date_stamp=None, **kwargs)
Generate the readonly schema, and dump it using pgdump.

class indra_db.cli.dump.SourceCount(start, use_principal=True, **kwargs)
Dumps a dict of dicts with source counts per source api per statement

class indra_db.cli.dump.ResiduePosition(start, use_principal=True, **kwargs)
Dumps a dict of dicts with residue/position data from Modifications

class indra_db.cli.dump.FullPaStmts(start, use_principal=False, **kwargs)
Dumps all statements found in FastRawPaLink as a pickle

class indra_db.cli.dump.FullPaJson(start, use_principal=False, **kwargs)
Dumps all statements found in FastRawPaLink as jsonl

class indra_db.cli.dump.Sif(start, use_principal=False, **kwargs)
Dumps a pandas dataframe of preassembled statements

class indra_db.cli.dump.StatementHashMeshId(start, use_principal=False, **kwargs)
Dump a mapping from Statement hashes to MeSH terms.

class indra_db.cli.dump.End(start=None, date_stamp=None, **kwargs)
Mark the dump as complete.

indra_db.cli.dump.dump(principal_db, readonly_db=None, delete_existing=False, allow_continue=True,
load_only=False, dump_only=False, no_redirect_to_principal=True)

Run the suite of dumps in the specified order.

Parameters
• principal_db (indra_db.databases.PrincipalDatabaseManager) – A handle to the

principal database.

• readonly_db (indra_db.databases.ReadonlyDatabaseManager) – A handle to the
readonly database. Optional when running dump only.

• delete_existing (bool) – If True, clear out the existing readonly build from the principal
database. Otherwise it will be continued. (Default is False)

• allow_continue (bool) – If True, each step will assume that it may already have been
done, and where possible the work will be picked up where it was left off. (Default is True)

• load_only (bool) – No new dumps will be created, but an existing dump will be used to
populate the given readonly database. (Default is False)

• dump_only (bool) – Do not load a new readonly database, only produce the dump files on
s3. (Default is False)

• no_redirect_to_principal (bool) – If False (default), and if we are running without
dump_only (i.e., we are also loading a dump into a readonly DB), then we redirect the lambda
function driving the REST API to the readonly schema in the principal DB while the readonly
DB is being restored. If True, this redirect is not attempted and we assume it is okay if the
readonly DB being restored is not accessible for the duration of the load.

indra_db.cli.dump.DumperChild

alias of End

44 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

4.2.4 Database Integrated Reading Tools

Here are defined the procedures for reading content on the database, stashing the reading outputs, and producing state-
ments from the readings, and inserting those raw statements into the database.

The Database Readers (indra_db.reading.read_db)

A reader is defined as a python class which implements the machinery needed to process the text content we store, read
it, and extract Statements from the reading results, storing the readings along the way. The reader must conform to a
standard interface, which then allows readers to be run in a plug-and-play manner.

This module provides essential tools to run reading using indra’s own database. This may also be run as a script; for
details run: python read_pmids_db --help

exception indra_db.reading.read_db.ReadDBError

indra_db.reading.read_db.generate_reading_id(tcid, reader_name, reader_version)
Generate the unique reading ID hash from content ID, reader, and version.

The format of the hash is AABBCCCCCCCCCC, where A is the placeholder for the reader ID, B is the placeholder
for the reader version integer, and C is reserved for the text content ID (it is loosely assumed we will not exceed
10^11 pieces of text content).

Parameters
• tcid (str) – The string-ified text content ID.

• reader_name (str) – The name of the reader. It must be one of the readers in readers.

• reader_version (str) – The version of the reader, which must be in the list of versions
for the given reader_name in reader_versions.

class indra_db.reading.read_db.DatabaseResultData(result, reading_id=None, db_info_id=None,
indra_version=None)

Contains metadata for statements, as well as the statement itself.

This, like ReadingData, is primarily designed for use with the database, carrying valuable information and meth-
ods for such.

Parameters
• result (an indra Result instance) – The result whose extra meta data this object en-

capsulates.

• reading_id (int or None) – The id number of the entry in the readings table of the
database. None if no such id is available.

• indra_version (str or None) – Override the default indra version, which is the version
of indra currently installed.

class indra_db.reading.read_db.DatabaseStatementData(*args, **kwargs)

static get_cols()

Get the columns for the tuple returned by make_tuple.

make_tuple(batch_id)
Make a tuple for copying into the database.

class indra_db.reading.read_db.DatabaseMeshRefData(result, reading_id=None, db_info_id=None,
indra_version=None)

4.2. INDRA Database modules 45

INDRA Database Documentation, Release 1.0.0

static get_cols()

Get the columns for the tuple returned by make_tuple.

make_tuple(batch_id)
Make a tuple for copying into the database.

class indra_db.reading.read_db.DatabaseReader(tcids, reader, verbose=True, reading_mode='unread',
rslt_mode='all', batch_size=1000, db=None, n_proc=1)

An class to run readings utilizing the database.

Parameters
• tcids (iterable of ints) – An iterable (set, list, tuple, generator, etc) of integers refer-

ring to the primary keys of text content in the database.

• reader (Reader) – An INDRA Reader object.

• verbose (bool) – Optional, default False - If True, log and print the output of the comman-
dline reader utilities, if False, don’t.

• reading_mode (str : 'all', 'unread', or 'none') – Optional, default ‘undread’ - If
‘all’, read everything (generally slow); if ‘unread’, only read things that were unread, (the
cache of old readings may still be used if rslt_mode=’all’ to get everything); if ‘none’, don’t
read, and only retrieve existing readings.

• rslt_mode (str : 'all', 'unread', or 'none') – Optional, default ‘all’ - If ‘all’, pro-
duce results for all content for all readers. If the readings were already produced, they will
be retrieved from the database if read_mode is ‘none’ or ‘unread’. If this option is ‘unread’,
only the newly produced readings will be processed. If ‘none’, no rs will be produced.

• batch_size (int) – Optional, default 1000 - The number of text content entries to be
yielded by the database at a given time.

• db (indra_db.DatabaseManager instance) – Optional, default is None, in which case
the primary database provided by get_db(‘primary’) function is used. Used to interface with
a different database.

dump_readings_to_db()

Put the reading output on the database.

dump_readings_to_pickle(pickle_file)
Dump the reading results into a pickle file.

get_readings()

Get the reading output for the given ids.

dump_results_to_db()

Upload the results to the database.

dump_results_to_pickle(pickle_file)
Dump the results into a pickle file.

get_results()

Convert the reader output into a list of ResultData instances.

make_results(reading_data_list, num_proc=1)
Convert a list of ReadingData instances into ResultData instances.

indra_db.reading.read_db.process_content(text_content)
Get the appropriate content object from the text content.

46 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

indra_db.reading.read_db.construct_readers(reader_names, **kwargs)
Construct the Reader objects from the names of the readers.

indra_db.reading.read_db.read(db_reader, rslt_mode, reading_pickle, rslts_pickle, upload_readings,
upload_rslts)

Read for a single reader

indra_db.reading.read_db.run_reading(readers, tcids, verbose=True, reading_mode='unread',
rslt_mode='all', batch_size=1000, reading_pickle=None,
stmts_pickle=None, upload_readings=True, upload_stmts=True,
db=None)

Run the reading with the given readers on the given text content ids.

The Database Script for Running on AWS (indra_db.reading.read_db_aws)

This is the script used to run reading on AWS Batch, generally run from an AWS Lambda function.

This script is intended to be run on an Amazon ECS container, so information for the job either needs to be provided
in environment variables (e.g., the REACH version and path) or loaded from S3 (e.g., the list of PMIDs).

indra_db.reading.read_db_aws.is_trips_datestring(s)
Indicate whether a string has the form of a TRIPS log dir.

A Class to Manage and Monitor AWS Batch Jobs (indra_db.reading.submitter)

Allow a manager to monitor the Batch jobs to prevent runaway jobs, and smooth out job runs and submissions.

“This file acts as a script to run large batch jobs on AWS.

The key components are the DbReadingSubmitter class, and the submit_db_reading function. The function is provided
as a shallow wrapper for backwards compatibility, and may eventually be removed. The preferred method for running
large batches via the ipython, or from a python environment, is the following:

>> sub = DbReadingSubmitter(‘name_for_run’, [‘reach’, ‘sparser’]) >> sub.set_options(prioritize=True)
>> sub.submit_reading(‘file/location/of/ids_to_read.txt’, 0, None, ids_per_job=1000) >>
sub.watch_and_wait(idle_log_timeout=100, kill_on_timeout=True)

Additionally, this file may be run as a script. For details, run

bash$ python submit_reading_pipeline.py –help

In your favorite command line.

4.2.5 Database Integrated Preassembly Tools

The database runs incremental preassembly on the raw statements to generate the preassembled (PA) Statements. The
code to accomplish this task is defined here, principally in DbPreassembler. This module also defines proceedures
for running these jobs on AWS.

4.2. INDRA Database modules 47

INDRA Database Documentation, Release 1.0.0

Database Preassembly (indra_db.preassembly.preassemble_db)

This module defines a class that manages preassembly for a given list of statement types on the local machine.

exception indra_db.preassembly.preassemble_db.IndraDBPreassemblyError

exception indra_db.preassembly.preassemble_db.UserQuit

class indra_db.preassembly.preassemble_db.DbPreassembler(batch_size=10000, s3_cache=None,
print_logs=False, stmt_type=None,
yes_all=False, ontology=None)

Class used to manage the preassembly pipeline

Parameters
batch_size (int) – Select the maximum number of statements you wish to be handled at a
time. In general, a larger batch size will somewhat be faster, but require much more memory.

create_corpus(db, continuing=False)
Initialize the table of preassembled statements.

This method will find the set of unique knowledge represented in the table of raw statements, and it will pop-
ulate the table of preassembled statements (PAStatements/pa_statements), while maintaining links between
the raw statements and their unique (pa) counterparts. Furthermore, the refinement/support relationships
between unique statements will be found and recorded in the PASupportLinks/pa_support_links table.

For more detail on preassembly, see indra/preassembler/__init__.py

supplement_corpus(db, continuing=False)
Update the table of preassembled statements.

This method will take any new raw statements that have not yet been incorporated into the preassembled
table, and use them to augment the preassembled table.

The resulting updated table is indistinguishable from the result you would achieve if you had simply re-run
preassembly on _all_ the raw statements.

indra_db.preassembly.preassemble_db.shash(s)
Get the shallow hash of a statement.

indra_db.preassembly.preassemble_db.make_graph(unique_stmts, match_key_maps)
Create a networkx graph of the statement and their links.

A Class to Manage and Monitor AWS Batch Jobs (indra_db.preassembly.submitter)

Allow a manager to monitor the Batch jobs to prevent runaway jobs, and smooth out job runs and submissions.

4.2.6 Database Schemas

Here are defined the schemas for the principal and readonly databases, as well as some useful mixin classes.

48 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

Principal Database Schema (indra_db.schemas.principal_schema)

The Principal Schema

The Principal database is the core representation of our data, the ultimate authority on what we know. It is heavily
optimized for the input and maintenance of our data.

class indra_db.schemas.principal_schema.PrincipalSchema(Base)
The Principal schema class organizes the table constructors.

The tables can be divided into various groups, with a clear order of creation for many of them.

Core Tables
First are the core tables representing our knowledge:

1. text_ref

2. text_content

3. reading

4. db_info

5. raw_statements

6. raw_unique_links

7. pa_statements

8. pa_support_links

Statement Attribute Tables
Then there are the tables that represent attributes of statements. The set of tables is identical for the raw state-
ments:

• raw_activity

• raw_agents

• raw_muts

• raw_mods

and the preassembled statements:

• pa_activity

• pa_agents

• pa_muts

• pa_mods

Curation Table
This table is where we record the curations submitted by ourselves and our users, which we use to improve our
results.

• curations

Ancillary Tables
We also have several tables that we use to keep track of processing metadata, and some artifacts useful in that
processing.

• updates

4.2. INDRA Database modules 49

INDRA Database Documentation, Release 1.0.0

• source_file

• reading_updates

• preassembly_updates

• xdd_updates

• rejected_statements

• discarded_statements

text_ref()

Represent a piece of text, as per its identifiers.

Each piece of text will be made available in different forms through different services, most commonly
abstracts through pubmed and full text through pubmed central. However they are from the same paper,
which has various different identifiers, such as pmids, pmcids, and dois.

We do our best to merge the different identifiers and for the most part each paper has exactly one text ref.
Where that is not the case it is mostly impossible to automatically reconcile the different identifiers (this
often has to do with inconsistent versioning of a paper and mixups over what is IDed).

Size: medium

Basic Columns
These are the core columns representing the different IDs we use to represent a paper.

• id integer PRIMARY KEY: The primary key of the TextRef entry. Elsewhere this is often referred to
as a “text ref ID” or “trid” for short.

• pmid varchar(20): The identifier from pubmed.

• pmcid varchar(20): The identifier from PubMed Central (e.g. “PMC12345”)

• doi varchar(100): The ideally universal identifier.

• pii varchar(250): The identifier used by Springer.

• url varchar UNIQUE: For sources found exclusively online (e.g. wikipedia) use their URL.

• manuscript_id varchar(100) UNIQUE: The ID assigned documents given to PMC author
manuscripts.

Metadata Columns
In addition we also track some basic metadata about the entry and updates to the data in the table.

• create_date timestamp without time zone: The date the record was added.

• last_updated timestamp without time zone: The most recent time the record was edited.

• pub_year integer: The year the article was published, based on the first report we find (in order of
PubMed, PMC, then PMC Manuscripts).

Constraints
Postgres is extremely efficient at detecting conflicts, and we use this to help ensure our entries do not have
any duplicates.

• pmid-doi: UNIQUE(pmid, doi)

• pmid-pmcid: UNIQUE(pmid, pmcid)

• pmcid-doi: UNIQUE(pmcid, doi)

50 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

Lookup Columns
Some columns are hard to look up when they are in their native string format, so they are processed and
broken down into integer parts, as far as possible.

• pmid_num integer: the int-ified pmid, faster for lookup.

• pmcid_num integer: the int-portion of the PMCID, so “PMC12345” would here be 12345.

• pmcid_version integer: although rarely used, occasionally a PMC ID will have a version, indicated
by a dot, e.g. PMC12345.3, in which case the “3” would be stored in this column.

• doi_ns integer: The DOI system works by assigning organizations (such as a journal) namespace
IDs, and that organization is then responsible for maintaining a unique ID system internally. These
namespaces are always numbers, and are stored here as such.

• doi_id varchar: The custom ID given by the publishing organization.

mesh_ref_annotations()

Represent the MeSH annotations of papers provided by PubMed.

Each abstract/entry in PubMed is accompanied by human-curated MeSH IDs indicating the topics of the
paper. Each paper will have many IDs in general, so a separate table is used, liked to the text_ref table
by an un-constrained PMID. This make insertion of the data easier because the custom TRIDs need not be
retrieved to dump the mesh refs.

Size: large

Columns
• id integer PRIMARY KEY: The primary database-assigned ID of the row.

• pmid_num integer NOT NULL: The int-ified pmid that is used to link entries in this table with those
in the text_ref table.

• mesh_num `integer NOT NULL: The intified MeSH ID (with the prefix removed). The is_concept
column indicates whether the prefix was D (False) or C (True).

• qual_num integer: The qualifier number that is sometimes included with the annotation (Prefix Q).

• major_topic boolean DEFAULT false: The major topic flag indicates whether the ID describes a
primary purpose of the paper.

• is_concept boolean DEFAUL false: Indicate whether the prefix was C (true) or D (false).

Constraints
Postgres is extremely efficient at detecting conflicts, and we use this to help ensure our entries do not have
any duplicates.

• mesh-uniqueness: UNIQUE(pmid_num, mesh_num, qual_num, is_concept)

mti_ref_annotaions_test()

Represent the MeSH annotations of abstracts as inferred by MTI.

MTI is a machine learned model that attempts to predict MeSH annotations on new un-annotated abstracts
after training on the existing annotations.

Size: medium

Columns
• id integer PRIMARY KEY: The primary database-assigned ID of the row.

• pmid_num integer NOT NULL: The int-ified pmid that is used to link entries in this table with those
in the text_ref table.

4.2. INDRA Database modules 51

INDRA Database Documentation, Release 1.0.0

• mesh_num `integer NOT NULL: The intified MeSH ID (with the prefix removed). The is_concept
column indicates whether the prefix was D (False) or C (True).

• qual_num integer: The qualifier number that is sometimes included with the annotation (Prefix Q).

• major_topic boolean DEFAULT false: The major topic flag indicates whether the ID describes a
primary purpose of the paper.

• is_concept boolean DEFAUL false: Indicate whether the prefix was C (true) or D (false).

Constraints
Postgres is extremely efficient at detecting conflicts, and we use this to help ensure our entries do not have
any duplicates.

• mesh-uniqueness: UNIQUE(pmid_num, mesh_num, qual_num, is_concept)

text_content()

Represent the content of a text retrieved from a particular source.

For each paper as a logical entity, there are many places where you can acquire the actual article or parts of
it. For example you can get an abstract from PubMed for most content, and for a minority subset you can
get full text from PubMed Central, either their Open-Access corpus or their author’s Manuscripts.

Both the text itself and the metadata for the source of the text are represented in this table.

Size: large

Basic Columns
• id integer PRIMARY KEY: The auto-generated primary key of the table. These are elsewhere called

Text Content IDs, or TCIDs.

• text_ref_id integer NOT NULL: A foreign-key constrained reference to the appropriate entry in the
text_ref table.

• source varchar(250) NOT NULL: The name of the source, e.g. “pubmed” or “pmc_oa”. The list of
content names can be found in the class attributes in content managers.

• format varchar(250) NOT NULL: The file format of the content, e.g. “XML” or “TEXT”.

• text_type varchar(250) NOT NULL: The type of the text, e.g. “abstract” of “fulltext”.

• preprint boolean: Indicate whether the content is from a preprint.

• license [varchar]: Record the license that applies to the content.

• content bytea: The raw compressed bytes of the content.

Metadata Columns
• insert_data timestamp without time zone: The date the record was added.

• last_updated timestamp without time zone: The most recent time the record was edited.

Constraints
Postgres is extremely efficient at detecting conflicts, and we use this to help ensure our entries do not have
any duplicates.

• content-uniqueness: UNIQUE(text_ref_id, source, format, text_type)

reading()

Represent a reading of a piece of text.

We have multiple readers and of course many thousands of pieces of text content. Each entry in this table
applies to a given reader applied to a given pieces of content.

52 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

As such, the primary ID is a hash constructed from the text content ID prepended with integers that are as-
signed to each reader-reader version pair. The function generate_reading_id implements the particular
process used. The reader numbers are assigned in the readers global, and the reader version number is the
index of the version listed for the given reader in the reader_versions dictionary in the same module.

Size: very large

Basic Columns
• id bigint PRIMARY KEY: A hash ID constructed from a reader number, reader version number, and

the text content ID of the content that was read.

• text_content_id integer NOT NULL: A foreign-key constrained reference to the appropriate entry in
the text_content table.

• batch_id integer NOT NULL: A simple random integer (not unique) that is assigned each batch of
inserted readings. It is used in the moments after the insert to easily retrieve the content that was just
added, potentially plus some extra.

• reader varchar(20) NOT NULL: The name of the reader, e.g. “REACH” or “SPARSER”.

• reader_version varchar(20) NOT NULL: The version of the reader, which may be any arbitrary
string in principle. This allows each reader to define its own versioning scheme.

• format varchar(20) NOT NULL: The file format of the reading result, e.g. “XML” or “JSON”.

• bytes bytea: The raw compressed bytes of the reading result.

Metadata Columns
• create_date timestamp without time zone: The date the record was added.

• last_updated timestamp without time zone: The most recent time the record was edited.

Constraints
Postgres is extremely efficient at detecting conflicts, and we use this to help ensure our entries do not have
any duplicates.

• reading-uniqeness: UNIQUE(text_content_id, reader, reader_version)

db_info()

Represent the provenance and metadata for an external knowledge base.

INDRA DB takes content not just from our own readings but also merges that with many pre-existing
knowledge bases, many of them human curated. These knowledge bases are defined and managed by classes
contained in knowledgebase_manager.

No real data is contained in this column, simply records of which knowledge bases have been added, up-
dated, and when.

Size: very small

Basic Columns
• id integer PRIMARY KEY: A database-assigned integer unique ID for each database entry. These are

elsewhere referred to as db_info_ids or dbids.

• db_name varchar NOT NULL: A short lowercase string that is used internally to identify the knowl-
edge base, e.g. “pc” for Pathway Commons.

• db_full_name varchar NOT NULL: The full name of the knowledge base, neatly formatted, e.g.
“Pathway Commons”.

• source_api varchar NOT NULL: The indra source API that was used to extract Statements from the
knowledge base, e.g. “biopax”.

4.2. INDRA Database modules 53

INDRA Database Documentation, Release 1.0.0

Metadata Columns
• create_date timestamp without time zone: The date the record was added.

• last_updated timestamp without time zone: The most recent time the record was edited.

raw_statements()

Represent Statements exactly as extracted by their source apis.

INDRA Defines several source APIs for different file types from which we can extract INDRA Statements.
The goal of these APIs is primarily to accurately convey the contents of the files, and minimal fixes are
made at this stage (e.g. grounding is saved for preassembly).

Thus this table contains statements that are considered “messy” in two key ways:

• they have a lot of repetition of information, and

• they have whatever grounding the original source gave them.

However these Statements also have the Evidence object JSON contained in their json column, and this
Evidence information is NOT copied into the pa_statements table, which allows for a flexible incremen-
tal updates. A “lateral join” on this table can be used to get the first N evidence associated with each PA
Statement.

Size: very large

Basic Columns
• id integer PRIMARY KEY: A database-assigned integer unique ID for each database entry. These are

elsewhere referred to as “Statement ID”s, or “sid”s.

• uuid varchar UNIQUE NOT NULL: A UUID generated when a Statement object is first created. This
can be used for tracking particular objects through the code.

• batch_id integer NOT NULL: A simple random integer (not unique) that is assigned each batch of
inserted Statements. It is used in the moments after the insert to easily retrieve the content that was
just added, potentially plus some extra.

• mk_hash bigint NOT NULL: A hash of the matches_key of a Statement. This should be unique for
any statement containing the same information.

• text_hash bigint: A hash of a the evidence text, used to detect exact duplicate Statements (same
information from the same exact source, right down to the text) that sometimes occur due to bugs

• source_hash bigint NOT NULL: A hash of the source information.

• db_info_id integer: A foreign key into the db_info table, for those statements that come from
knowledge bases.

• reading_id bigint: A foreign key into the reading table, for those statements that come from a
reading.

• type varchar(100) NOT NULL: The type of the Statement, e.g. “Phosphorylation”.

• indra_version varchar(100) NOT NULL: The version of INDRA that was used to generate this
Statement, specifically as returned by indra.util.get_version.get_version().

• json bytea NOT NULL: The bytes of the Statement JSON (including exactly one Evidence JSON)

Metadata Columns
• create_date timestamp without time zone: The date the Statement was added.

Constraints

54 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

Postgres is extremely efficient at detecting conflicts, and we use this to help ensure our entries do not have
any duplicates.

• reading_raw_statement_uniqueness: UNIQUE(mk_hash, text_hash, reading_id)

• db_info_raw_statement_uniqueness: UNIQUE(mk_hash, source_hash, db_info_id)

raw_activity()

Represent the activity of a raw statement (an ActiveForm).

raw_agents()

Represent an identifier for an agent of a raw statement.

raw_mods()

Represent a modification of an agent of a raw statement.

raw_muts()

Represent a mutation of an agent of a raw statement.

raw_unique_links()

Represent links between raw statements and preassembled statements.

Each preassembled statement is constructed from multiple raw statements, in general. This maps each
pa_statement to the raw statements that were merged to form it. It is through this table that evidence
can be gathered for pa_statements.

The astute reader may note that the raw_statements-to -pa_statement relationship is many-to-one,
which can be represented simply using a foreign-key in the “many” table, in this case raw_statements.
This is not done because the pa_statement does not, in general, exist when the raw_statement is added
to the database.

Constructed as it is, these links can be copied in bulk during preassembly, as opposed to having to modify
as many as a million entries with a newly created foreign-key map.

Size: large

Basic Columns
• id integer PRIMARY KEY: A database-assigned integer unique ID for each database entry.

• raw_stmt_id integer NOT NULL REFERENCES raw_statements(id): The Raw Statement ID
foreign key to the raw_statements table.

• pa_stmt_mk_hash bigint NOT NULL REFERENCES pa_statements(mk_hash): The PA State-
ment matches-key hash foreign key to the pa_statements table.

Constraints
Postgres is extremely efficient at detecting conflicts, and we use this to help ensure our entries do not have
any duplicates.

• stmt-link-uniqueness: UNIQUE(raw_stmt_id, pa_stmt_mk_hash)

pa_statements()

Represent preassembled statements.

Preassmebled Statements are generated from Raw Statements using INDRA’s preassembly tools.
Specifically:

• agents are grounded,

• agent groundings are disambiguated (using adeft),

• sites are fixed (using protmapper),

4.2. INDRA Database modules 55

INDRA Database Documentation, Release 1.0.0

• and finally, repeated information is consolidated, for example Phosphorylation(MEK(),
ERK()) is represented only once in this corpus, with links to the many instances that infor-
mation was extracted, which are stored in the raw_statements table.

Each entry is linked back to the (in general multiple) raw statements it was derived from in the
raw_unique_links table.

Size: medium large

Basic Columns
• mk_hash bigint PRIMARY KEY: a hash of the statement matches key, which is unique for the _knowl-

edge_ of the Statement.

• matches_key varchar NOT NULL: The matches-key that was hashed.

• uuid varchar UNIQUE NOT NULL: A UUID generated when a Statement object is first created. This
can be used for tracking particular objects through the code. The UUID is distinct from any of the raw
statement UUIDs that compose this Statement.

• type varchar(100) NOT NULL: The type of the Statement, e.g. “Phosphorylation”.

• indra_version varchar(100) NOT NULL: The version of INDRA that was used to generate this
Statement, specifically as returned by indra.util.get_version.get_version().

• json bytea NOT NULL: The bytes of the Statement JSON (including exactly one Evidence JSON)

Metadata Columns
• create_date timestamp without time zone: The date the Statement was added.

pa_support_links()

Represent the links of support calculated during preassembly.

In INDRA, we look for cases where more specific Statements may lend support to more general Statements,
and potentially vice versa, to better gauge whether an extraction is reliable.

Size: large

Basic Columns
• id integer PRIMARY KEY: A database-assigned integer unique ID for each database entry.

• supporting_mk_hash bigint NOT NULL REFERENCES pa_statements(mk_hash): A foreign
key to the PA Statement that is giving the support (that is, the more specific Statement).

• supported_mk_hash bigint NOT NULL REFERENCES pa_statements(mk_hash): A foreign
key to the PA Statement that is given the support (that is, the more generic Statement).

Constraints
Postgres is extremely efficient at detecting conflicts, and we use this to help ensure our entries do not have
any duplicates.

• pa_support_links_link_uniqueness: UNIQUE(supporting_mk_hash, supported_mk_hash)

pa_activity()

Represent the activity of a preassembled Statement.

pa_agents()

Represent an identifier for an agent of a preassembled statement.

pa_mods()

Represent a modification of an agent of a preassembled statement.

56 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

pa_muts()

Represent a mutation of an agent of a preassembled statement.

curations()

Represent the curations of our content.

At various points in our APIs and UIs it is possible to curate the content we have extracted, recording
whether it is an accurate extraction from the source text, and if not the reason why.

Size: small

Basic Columns
• id integer PRIMARY KEY: A database-assigned integer unique ID for each database entry.

• pa_hash bigint REFERENCES pa_statements(mk_hash): A reference into the pa_statements
table to the the pa statement whose evidence was curated.

• source_hash bigint: A hash that represents the source of this Statement (e.g. reader and piece of
content).

• tag varchar: A text code indicating the type of error curated. The domain of these strings is regulated
in code elsewhere.

• text varchar: A free-form text description by the curator of what they think went wrong (or right).

• curator varchar NOT NULL: The identity of the curator. This has elsewhere been standardized to be
their email.

• auth_id varchar: [deprecated]

• source varchar: A string indicating where this curation originated, e.g. “DB REST API” for the
INDRA Database REST service.

• ip inet: The IP address from which the curation was submitted.

• date timestamp without time zone: The date the curation was added.

• pa_json jsonb: the preassembled Statement JSON that was curated.

• ev_json jsonb: the Evidence JSON that was curated (including the text).

source_file()

Record the pubmed source file that was processed.

updates()

Record when text ref and content updates were performed.

reading_updates()

Record runs of the readers on the content we have found.

xdd_updates()

Record the times we process dumps from xDD.

rejected_statements()

Represent raw statements that were rejected.

discarded_statements()

Record the reasons for which some statements were discarded.

preassembly_updates()

Record updates of the preassembled corpus.

4.2. INDRA Database modules 57

INDRA Database Documentation, Release 1.0.0

Readonly Database Schema (indra_db.schemas.readonly_schema)

Defines the get_schema function for the readonly database, which is used by external services to access the Statement
knowledge we acquire.

class indra_db.schemas.readonly_schema.ReadonlySchema(Base)
Schema for the Readonly database.

We use a readonly database to allow fast and efficient load of data, and to add a layer of separation between the
processes of updating the content of the database and accessing the content of the database. However, it is not
practical to have the views created through sqlalchemy: instead they are generated and updated manually (or by
other non-sqlalchemy scripts).

Before building these tables, the belief table must already have been loaded into the readonly database.

The following views must be built in this specific order (temp):

1. raw_stmt_src

2. fast_raw_pa_link

3. pa_agent_counts

4. (pa_stmt_src)

5. evidence_counts

6. reading_ref_link

7. (pa_ref_link)

8. (mesh_terms)

9. (mesh_concepts)

10. (hash_pmid_counts)

11. mesh_term_ref_counts

12. mesh_concept_ref_counts

13. raw_stmt_mesh_terms

14. raw_stmt_mesh_concepts

15. (pa_meta)

16. source_meta

17. text_meta

18. name_meta

19. other_meta

20. mesh_term_meta

21. mesh_concept_meta

22. agent_interaction

Note that the order of views below is determined not by the above order but by constraints imposed by use-case.

Meta Tables
Any table that has “meta” in the name is intended as a primary lookup table. This means it will have both the
data indicated in the name of the table, such at (agent) “text”, (agent) “name”, or “source”, but also a collection
of columns with metadata essential for sorting and grouping of hashes:

58 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

• Sorting:

– belief
– ev_count
– agent_count

• Grouping:

– type_num
– activity
– is_active

Temporary Tables
There are some intermediate results that it is worthwhile to calculate and store for future table construction.
Sometimes these were once permanent tables but are no longer used for their own sake, and it was simply simpler
to delete them after their derivatives were completed. In other cases the temporary tables are more principled:
created because many future tables draw on them and using a “with” clause for each one would be impractical.

Whatever the reason, deleting the temporary tables greatly reduces the size of the readonly database. Such tables
are marked in with “(temp)” at the beginning of their doc string.

belief()

The belief of preassembled statements, keyed by hash.

Columns
• mk_hash bigint

• belief real
Indices

• mk_hash
evidence_counts()

The evidence counts of pa statements, keyed by hash.

Columns
• mk_hash bigint

• ev_count integer
Indices

• mk_hash
reading_ref_link()

The source metadata for readings, keyed by reading ID.

Columns
• trid integer

• pmid varchar(20)

• pmid_num integer

• pmcid varchar(20)

• pmcid_num integer

• pmcid_version integer

4.2. INDRA Database modules 59

INDRA Database Documentation, Release 1.0.0

• doi varchar(100)
• doi_ns integer
• doi_id varchar

• pii varchar(250)
• url varchar(250)
• manuscript_id varchar(100)

• tcid integer

• source varchar(250)
• rid integer

• reader varchar(20)
Indices

• rid
• pmid
• pmid_num
• pmcid
• pmcid_num
• doi
• doi_ns
• doi_id
• manuscript_id
• tcid
• trid

fast_raw_pa_link()

Join of PA JSONs and Raw JSONs for faster lookup.

Columns
• id integer

• raw_json bytea

• reading_id bigint

• db_info_id integer

• mk_hash bigint

• pa_json bytea

• type_num smallint

• src varchar
Indices

• mk_hash
• reading_id

60 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

• db_info_id
• src

pa_agent_counts()

The number of agents for each Statement, keyed by hash.

Columns
• mk_hash bigint

• agent_count integer
Indices

• mk_hash
raw_stmt_src()

The source (e.g. reach, pc) of each raw statement, keyed by SID.

Columns
• sid integer

• src varchar
Indices

• sid
• src

pa_stmt_src()

(temp) The number of evidence from each source for a PA Statement.

This table is constructed by forming a column for every source short name present in the raw_stmt_src.

Columns
• mk_hash bigint

• . . . one column for each source. . . integer

Indices
• mk_hash

pa_ref_link()

(temp) A quick-lookup from mk_hash to basic text ref data.

Columns
• mk_hash bigint

• trid integer

• pmid_num varchar

• pmcid_num varchar

• source varchar
• reader varchar

Indices
• mk_hash
• trid

4.2. INDRA Database modules 61

INDRA Database Documentation, Release 1.0.0

• pmid_num
mesh_terms()

(temp) All mesh annotations with D prefix, keyed by PMID int.

Columns
• mesh_num integer

• pmid_num integer

Indices
• pmid_num

mesh_concepts()

(temp) All mesh annotations with C prefix, keyed by PMID int.

Columns
• mesh_num integer

• pmid_num integer

Indices
• pmid_num

hash_pmid_counts()

(temp) The number of pmids for each PA Statement, keyed by hash.

Columns
• mk_hash bigint

• pmid_count integer
Indices

• mk_hash
mesh_term_ref_counts()

The D-type mesh IDs with pmid and ref counts, keyed by hash and mesh.

Columns
• mk_hash bigint

• mesh_num integer

• ref_count integer
• pmid_count integer

Indices
• mesh_num
• mk_hash

mesh_concept_ref_counts()

The C-type mesh IDs with pmid and ref counts, keyed by hash and mesh.

Columns
• mk_hash bigint

• mesh_num integer

62 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

• ref_count integer
• pmid_count integer

Indices
• mesh_num
• mk_hash

raw_stmt_mesh_terms()

The D-type mesh number raw statement ID mapping.

Columns
• sid integer

• mesh_num integer

Indices
• sid
• mesh_num

raw_stmt_mesh_concepts()

The C-type mesh number raw statement ID mapping.

Columns
• sid integer

• mesh_num integer

Indices
• sid
• mesh_num

pa_meta()

(temp) The metadata most valuable for querying PA Statements.

This table is used to generate the more scope-limited name_meta, text_meta, and other_meta. The
reason is that NAME and TEXT (in particular) agent groundings are vastly overrepresented.

Columns
• ag_id integer

• ag_num integer

• db_name varchar
• db_id varchar

• role_num smallint

• type_num smallint

• mk_hash bigint

• ev_count integer
• belief real
• activity varchar

• is_active boolean

4.2. INDRA Database modules 63

INDRA Database Documentation, Release 1.0.0

• agent_count integer
• is_complex_dup boolean

Indices
• db_name
• mk_hash

source_meta()

All the source-related metadata condensed using JSONB, keyed by hash.

Columns
• mk_hash bigint

• ev_count integer
• belief real
• num_srcs integer
• src_json json

• only_src varchar
• has_rd boolean

• has_db boolean

• type_num smallint

• activity varchar

• is_active boolean
• agent_count integer

Indices
• mk_hash
• only_src
• activity
• type_num
• num_srcs

text_meta()

The metadata most valuable for querying PA Statements by agent TEXT.

This table is generated from pa_meta, because TEXT is extremely overrepresented among agent ground-
ings. Removing these and NAMEs from the “OTHER” efficiently narrows the search very rapidly, and for
the larger sets of NAME and TEXT removes an index-search.

Columns
• ag_id integer

• ag_num integer

• db_id varchar

• role_num smallint

• type_num smallint

64 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

• mk_hash bigint

• ev_count integer
• belief real
• activity varchar

• is_active boolean
• agent_count integer
• is_complex_dup boolean

Indices
• mk_hash
• db_id
• type_num
• activity

name_meta()

The metadata most valuable for querying PA Statements by agent NAME.

This table is generated from pa_meta, because NAME is overrepresented among agent groundings. Re-
moving these and NAMEs from the “OTHER” efficiently narrows the search very rapidly, and for the larger
sets of NAME and TEXT removes an index-search.

Columns
• ag_id integer

• ag_num integer

• db_id varchar

• role_num smallint

• type_num smallint

• mk_hash bigint

• ev_count integer
• belief real
• activity varchar

• is_active boolean
• agent_count integer
• is_complex_dup boolean

Indices
• mk_hash
• db_id
• type_num
• activity

4.2. INDRA Database modules 65

INDRA Database Documentation, Release 1.0.0

other_meta()

The metadata most valuable for querying PA Statements.

This table is a copy of pa_meta with rows with agent groundings besides NAME and TEXT removed.

Columns
• ag_id integer

• ag_num integer

• db_name varchar
• db_id varchar

• role_num smallint

• type_num smallint

• mk_hash bigint

• ev_count integer
• belief real
• activity varchar

• is_active boolean
• agent_count integer
• is_complex_dup boolean

Indices
• mk_hash
• db_name
• db_id
• type_num
• activity

mesh_term_meta()

A lookup for hashes by D-type mesh IDs.

Columns
• mk_hash bigint

• mesh_num integer

• tr_count integer
• ev_count integer
• belief real
• type_num smallint

• activity varchar

• is_active boolean
• agent_count integer

Indices

66 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

• mk_hash
• type_num
• activity

mesh_concept_meta()

A lookup for hashes by C-type mesh IDs.

Columns
• mk_hash bigint

• mesh_num integer

• tr_count integer
• ev_count integer
• belief real
• type_num smallint

• activity varchar

• is_active boolean
• agent_count integer

Indices
• mk_hash
• type_num
• activity

agent_interactions()

Agent and type data in simple JSONs for rapid lookup, keyed by hash.

This table is used for retrieving interactions, agent pairs, and relations (any kind of return that is more
generic than full Statements).

Columns
• mk_hash bigint

• ev_count integer
• belief real
• type_num smallint

• activity varchar

• is_active boolean
• agent_count integer
• agent_json jsonb

• src_json jsonb

• is_complex_dup boolean

Indices
• mk_hash
• agent_json

4.2. INDRA Database modules 67

INDRA Database Documentation, Release 1.0.0

• type_num

Class Mix-ins (indra_db.schemas.mixins)

This defines class mixins that are used to add general features to SQLAlchemy table objects via multiple inheritance.

exception indra_db.schemas.mixins.DbIndexError

class indra_db.schemas.mixins.IndraDBTableMetaClass(*args, **kwargs)
This serves as a meta class for all tables, allowing str to be useful.

In particular, this makes it so that the string gives a representation of the SQL table, including columns.

class indra_db.schemas.mixins.IndraDBRefTable

Define an API and methods for a table of text references.

classmethod pmid_in(pmid_list, filter_ids=False)
Get sqlalchemy clauses for entries IN a list of pmids.

classmethod pmid_notin(pmid_list, filter_ids=False)
Get sqlalchemy clauses for entries NOT IN a list of pmids.

classmethod pmcid_in(pmcid_list, filter_ids=False)
Get the sqlalchemy clauses for entries IN a list of pmcids.

classmethod pmcid_notin(pmcid_list, filter_ids=False)
Get the sqlalchemy clause for entries NOT IN a list of pmcids.

classmethod doi_in(doi_list, filter_ids=False)
Get clause for looking up entities IN a list of dois.

classmethod doi_notin(doi_list, filter_ids=False)
Get clause for looking up entities NOT IN a list of dois.

classmethod has_ref(id_type, id_list, filter_ids=False)
Get clause for entries IN the given ID list.

classmethod not_has_ref(id_type, id_list, filter_ids=False)
Get clause for entries NOT IN the given ID list

get_ref_dict()

Return the refs as a dictionary keyed by type.

class indra_db.schemas.mixins.Schema(Base)
General class for schemas

Indexes (indra_db.schemas.indexes)

This defines the classes needed to create and maintain indices in the database, the other part of the infrastructure of
which is included in the IndraDBTable class mixin definition.

68 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

4.2.7 Utilities

Here live the more mundane and backend utilities used throughout other modules of the codebase, and potentially
elsewhere, although they are not intended for external use in general. Several more-or-less bespoke scripts are also
stored here.

Database Session Constructors (indra_db.util.constructors)

Constructors to get interfaces to the different databases, selecting among the various physical instances defined in the
config file.

indra_db.util.constructors.get_db(db_label, protected=False)
Get a db instance base on it’s name in the config or env.

If the label does not exist or the database labeled can’t be reached, None is returned.

indra_db.util.constructors.get_primary_db(force_new=False)
Get a DatabaseManager instance for the primary database host.

The primary database host is defined in the defaults.txt file, or in a file given by the environment variable DE-
FAULTS_FILE. Alternatively, it may be defined by the INDRADBPRIMARY environment variable. If none of
the above are specified, this function will raise an exception.

Note: by default, calling this function twice will return the same DatabaseManager instance. In other words:

db1 = get_primary_db()
db2 = get_primary_db()
db1 is db2

This means also that, for example db1.select_one(db2.TextRef) will work, in the above context.

It is still recommended that when creating a script or function, or other general application, you should not
rely on this feature to get your access to the database, as it can make substituting a different database host both
complicated and messy. Rather, a database instance should be explicitly passed between different users as is
done in get_statements_by_gene_role_type function’s call to get_statements in indra.db.query_db_stmts.

Parameters
force_new (bool) – If true, a new instance will be created and returned, regardless of whether
there is an existing instance or not. Default is False, so that if this function has been called before
within the global scope, a the instance that was first created will be returned.

Returns
primary_db – An instance of the database manager that is attached to the primary database.

Return type
DatabaseManager

indra_db.util.constructors.get_ro(ro_label, protected=True)
Get a readonly database instance, based on its name.

If the label does not exist or the database labeled can’t be reached, None is returned.

indra_db.util.constructors.get_ro_host(ro_label)
Get the host of the current readonly database.

4.2. INDRA Database modules 69

INDRA Database Documentation, Release 1.0.0

Scripts to Get Content (indra_db.util.content_scripts)

General scripts for getting content by various IDs.

indra_db.util.content_scripts.get_stmts_with_agent_text_like(pattern, filter_genes=False,
db=None)

Get statement ids with agent with rawtext matching pattern

Parameters
• pattern (str) – a pattern understood by sqlalchemy’s like operator. For example ‘__’ for

two letter agents

• filter_genes (Optional[bool]) – if True, only returns map for agent texts for which
there is at least one HGNC grounding in the database. Default: False

• db (Optional[DatabaseManager]) – User has the option to pass in a database manager. If
None the primary database is used. Default: None

Returns
dict mapping agent texts to statement ids. agent text are those matching the input pattern. Each
agent text maps to the list of statement ids for statements containing an agent with that TEXT in
its db_refs

Return type
dict

indra_db.util.content_scripts.get_text_content_from_stmt_ids(stmt_ids, db=None)
Get text content for statements from a list of ids

Gets the fulltext if it is available, even if the statement came from an abstract.

Parameters
• stmt_ids (list of str) –

• db (Optional[DatabaseManager]) – User has the option to pass in a database manager. If
None the primary database is used. Default: None

Returns
ref_dict – dict mapping statement ids to identifiers for pieces of content. These identifiers take the
form `<text_ref_id>/<source>/<text_type>’. No entries exist for statements with no associated
text content (these typically come from databases)

Return type
dict

text_dict: dict
dict mapping content identifiers used as values in the ref_dict to best available text content. The order of
preference is fulltext xml > plaintext abstract > title

70 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

Distilling Raw Statements (indra_db.util.distill_statements)

Do some pre-pre-assembly cleansing of the raw Statements to account for various kinds of duplicity that are artifacts
of our content collection and reading pipelines rather than representing actually duplicated knowledge in the literature.

indra_db.util.distill_statements.delete_raw_statements_by_id(db, raw_sids, sync_session=False,
remove='all')

Delete raw statements, their agents, and their raw-unique links.

It is best to batch over this function with sets of 1000 or so ids. Setting sync_session to False will result in a
much faster resolution, but you may find some ORM objects have not been updated.

indra_db.util.distill_statements.distill_stmts(db, get_full_stmts=False, clauses=None,
handle_duplicates='error')

Get a corpus of statements from clauses and filters duplicate evidence.

Parameters
• db (DatabaseManager) – A database manager instance to access the database.

• get_full_stmts (bool) – By default (False), only Statement ids (the primary index of
Statements on the database) are returned. However, if set to True, serialized INDRA State-
ments will be returned. Note that this will in general be VERY large in memory, and therefore
should be used with caution.

• clauses (None or list of sqlalchemy clauses) – By default None. Specify
sqlalchemy clauses to reduce the scope of statements, e.g. clauses=[db.Statements.type ==
‘Phosphorylation’] or clauses=[db.Statements.uuid.in_([<uuids>])].

• handle_duplicates ('error', 'delete', or a string file path) – Choose
whether you want to delete the statements that are found to be duplicates (‘delete’), or write
a pickle file with their ids (at the string file path) for later handling, or raise an exception
(‘error’). The default behavior is ‘error’.

Returns
stmt_ret – A set of either statement ids or serialized statements, depending on get_full_stmts.

Return type
set

indra_db.util.distill_statements.get_filtered_db_stmts(db, get_full_stmts=False, clauses=None)
Get the set of statements/ids from databases minus exact duplicates.

indra_db.util.distill_statements.get_filtered_rdg_stmts(stmt_nd, get_full_stmts, linked_sids=None)
Get the set of statements/ids from readings minus exact duplicates.

indra_db.util.distill_statements.get_reading_stmt_dict(db, clauses=None, get_full_stmts=True)
Get a nested dict of statements, keyed by ref, content, and reading.

4.2. INDRA Database modules 71

INDRA Database Documentation, Release 1.0.0

Script to Create a SIF Dump (indra_db.util.dump_sif)

Create an interactome from metadata in the database and dump the results as a sif file.

indra_db.util.dump_sif.dump_sif(src_count_file, res_pos_file, belief_file, df_file=None, db_res_file=None,
csv_file=None, reload=True, reconvert=True, ro=None, normalize_names:
bool = True)

Build and dump a sif dataframe of PA statements with grounded agents

Parameters
• src_count_file (Union[str, S3Path]) – A location to load the source count dict from.

Can be local file path, an s3 url string or an S3Path instance.

• res_pos_file (Union[str, S3Path]) – A location to load the residue-postion dict from.
Can be local file path, an s3 url string or an S3Path instance.

• belief_file (Union[str, S3Path]) – A location to load the belief dict from. Can be
local file path, an s3 url string or an S3Path instance.

• df_file (Optional[Union[str, S3Path]]) – If provided, dump the sif to this location.
Can be local file path, an s3 url string or an S3Path instance.

• db_res_file (Optional[Union[str, S3Path]]) – If provided, save the db content to
this location. Can be local file path, an s3 url string or an S3Path instance.

• csv_file (Optional[str, S3Path]) – If provided, calculate dataframe statistics and
save to local file or s3. Can be local file path, an s3 url string or an S3Path instance.

• reconvert (bool) – Whether to generate a new DataFrame from the database content or to
load and return a DataFrame from df_file. If False, df_file must be given. Default: True.

• reload (bool) – If True, load new content from the database and make a new dataframe. If
False, content can be loaded from provided files. Default: True.

• ro (Optional[PrincipalDatabaseManager]) – Provide a DatabaseManager to load
database content from. If not provided, get_ro(‘primary’) will be used.

• normalize_names – If True, detect and try to merge name duplicates (same entity with
different names, e.g. Loratadin vs loratadin). Default: False

indra_db.util.dump_sif.get_source_counts(pkl_filename=None, ro=None)
Returns a dict of dicts with evidence count per source, per statement

The dictionary is at the top level keyed by statement hash and each entry contains a dictionary keyed by the source
that support the statement where the entries are the evidence count for that source.

indra_db.util.dump_sif.load_db_content(ns_list, pkl_filename=None, ro=None, reload=False)
Get preassembled stmt metadata from the DB for export.

Queries the NameMeta, TextMeta, and OtherMeta tables as needed to get agent/stmt metadata for agents from
the given namespaces.

Parameters
• ns_list (list of str) – List of agent namespaces to include in the metadata query.

• pkl_filename (str) – Name of pickle file to save to (if reloading) or load from (if not
reloading). If an S3 path is given (i.e., pkl_filename starts with s3:), the file is loaded to/saved
from S3. If not given, automatically reloads the content (overriding reload).

• ro (ReadonlyDatabaseManager) – Readonly database to load the content from. If not
given, calls get_ro(‘primary’) to get the primary readonly DB.

72 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

• reload (bool) – Whether to re-query the database for content or to load the content from
from pkl_filename. Note that even if reload is False, if no pkl_filename is given, data will be
reloaded anyway.

Returns
Set of tuples containing statement information organized by agent. Tuples contain (stmt_hash,
agent_ns, agent_id, agent_num, evidence_count, stmt_type).

Return type
set of tuples

indra_db.util.dump_sif.load_res_pos(ro=None)
Return residue/position data keyed by hash

indra_db.util.dump_sif.make_dataframe(reconvert, db_content, res_pos_dict, src_count_dict, belief_dict,
pkl_filename=None, normalize_names: bool = False)

Make a pickled DataFrame of the db content, one row per stmt.

Parameters
• reconvert (bool) – Whether to generate a new DataFrame from the database content or to

load and return a DataFrame from the given pickle file. If False, pkl_filename must be given.

• db_content (set of tuples) – Set of tuples of agent/stmt data as returned by
load_db_content.

• res_pos_dict (Dict[str, Dict[str, str]]) – Dict containing residue and position
keyed by hash.

• src_count_dict (Dict[str, Dict[str, int]]) – Dict of dicts containing source
counts per source api keyed by hash.

• belief_dict (Dict[str, float]) – Dict of belief scores keyed by hash.

• pkl_filename (str) – Name of pickle file to save to (if reconverting) or load from (if not
reconverting). If an S3 path is given (i.e., pkl_filename starts with s3:), the file is loaded
to/saved from S3. If not given, reloads the content (overriding reload).

• normalize_names – If True, detect and try to merge name duplicates (same entity with
different names, e.g. Loratadin vs loratadin). Default: False

Returns
DataFrame containing the content, with columns: ‘agA_ns’, ‘agA_id’, ‘agA_name’, ‘agB_ns’,
‘agB_id’, ‘agB_name’, ‘stmt_type’, ‘evidence_count’, ‘stmt_hash’.

Return type
pandas.DataFrame

General Helper Functions (indra_db.util.helpers)

Functions with broad utility throughout the repository, but otherwise miscellaneous.

indra_db.util.helpers.get_raw_stmts_frm_db_list(db, db_stmt_objs, fix_refs=True, with_sids=True)
Convert table objects of raw statements into INDRA Statement objects.

indra_db.util.helpers.get_statement_object(db_stmt)
Get an INDRA Statement object from a db_stmt.

4.2. INDRA Database modules 73

INDRA Database Documentation, Release 1.0.0

Routines for Inserting Statements and Content (indra_db.util.insert)

Inserting content into the database can be a rather involved process, but here are defined high-level utilities to uniformly
accomplish the task.

indra_db.util.insert.extract_agent_data(stmt, stmt_id)
Create the tuples for copying agents into the database.

indra_db.util.insert.insert_db_stmts(db, stmts, db_ref_id, verbose=False, batch_id=None)
Insert statement, their database, and any affiliated agents.

Note that this method is for uploading statements that came from a database to our database, not for inserting
any statements to the database.

Parameters
• db (DatabaseManager) – The manager for the database into which you are loading state-

ments.

• stmts (list [indra.statements.Statement]) – (Cannot be a generator) A list of un-
assembled indra statements, each with EXACTLY one evidence and no exact duplicates,
to be uploaded to the database.

• db_ref_id (int) – The id to the db_ref entry corresponding to these statements.

• verbose (bool) – If True, print extra information and a status bar while compiling state-
ments for insert. Default False.

• batch_id (int or None) – Select a batch id to use for this upload. It can be used to trace
what content has been added.

indra_db.util.insert.insert_pa_stmts(db, stmts, verbose=False, do_copy=True, ignore_agents=False,
commit=True)

Insert pre-assembled statements, and any affiliated agents.

Parameters
• db (DatabaseManager) – The manager for the database into which you are loading pre-

assembled statements.

• stmts (iterable [indra.statements.Statement]) – A list of pre-assembled indra state-
ments to be uploaded to the datbase.

• verbose (bool) – If True, print extra information and a status bar while compiling state-
ments for insert. Default False.

• do_copy (bool) – If True (default), use pgcopy to quickly insert the agents.

• ignore_agents (bool) – If False (default), add agents to the database. If True, then agent
insertion is skipped.

• commit (bool) – If True (default), commit the result immediately. Otherwise the results
are not committed (thus allowing multiple related insertions to be neatly rolled back upon
failure.)

indra_db.util.insert.insert_raw_agents(db, batch_id, stmts=None, verbose=False, num_per_yield=100,
commit=True)

Insert agents for statements that don’t have any agents.

Parameters
• db (DatabaseManager) – The manager for the database into which you are adding agents.

74 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

• batch_id (int) – Every set of new raw statements must be given an id unique to that copy
That id is used to get the set of statements that need agents added.

• stmts (list[indra.statements.Statement]) – The list of statements that include
those whose agents are being uploaded.

• verbose (bool) – If True, print extra information and a status bar while compiling agents
for insert from statements. Default False.

• num_per_yield (int) – To conserve memory, statements are loaded in batches of
num_per_yeild using the yeild_per feature of sqlalchemy queries.

• commit (bool) – Optionally do not commit at the end. Default is True, meaning a commit
will be executed.

indra_db.util.insert.regularize_agent_id(id_val, id_ns)
Change agent ids for better search-ability and index-ability.

4.2.8 Some Miscellaneous Modules

Here are some modules and files that live on their own, and don’t fit neatly into other categories.

Low Level Database Interface (indra_db.databases)

The Database Manager classes are the lowest level interface with the database, implemented with SQLAlchemy, pro-
viding useful short-cuts but also allowing full access to SQLAlchemy’s API.

class indra_db.databases.DatabaseManager(url, label=None, protected=False)
An object used to access INDRA’s database.

This object can be used to access and manage indra’s database. It includes both basic methods and some useful,
more high-level methods. It is designed to be used with postgresql, or sqlite.

This object is primarily built around sqlalchemy, which is a required package for its use. It also optionally makes
use of the pgcopy package for large data transfers.

If you wish to access the primary database, you can simply use the get_db function to get an instance of this
object using the default settings.

Parameters
• url (str) – The database to which you want to interface.

• label (OPTIONAL[str]) – A short string to indicate the purpose of the db instance. Set as
db_label when initialized with get_db(db_label).

Example

If you wish to access the primary database and find the the metadata for a particular pmid, 1234567:

from indra.db import get_db
db = get_db('primary')
res = db.select_all(db.TextRef, db.TextRef.pmid == '1234567')

You will get a list of objects whose attributes give the metadata contained in the columns of the table.

For more sophisticated examples, several use cases can be found in indra.tests.test_db.

4.2. INDRA Database modules 75

INDRA Database Documentation, Release 1.0.0

classmethod create_instance(instance_name, size, tag_dict=None)
Allocate the resources on RDS for a database, and return handle.

get_config_string()

Print a config entry for this handle.

This is useful after using create_instance.

get_env_string()

Generate the string for an environment variable.

This is useful after using create_instance.

grab_session()

Get an active session with the database.

get_tables()

Get a list of available tables.

show_tables(active_only=False, schema=None)
Print a list of all the available tables.

get_active_tables(schema=None)
Get the tables currently active in the database.

Parameters
schema (None or st) – The name of the schema whose tables you wish to see. The default
is public.

get_schemas()

Return the list of schema names currently in the database.

create_schema(schema_name)
Create a schema with the given name.

drop_schema(schema_name, cascade=True)
Drop a schema (rather forcefully by default)

get_column_names(table)
“Get a list of the column labels for a table.

Note that if the table involves a schema, the schema name must be prepended to the table name.

get_column_objects(table)
Get a list of the column object for the given table.

Note that if the table involves a schema, the schema name must be prepended to the table name.

commit(err_msg)
Commit, and give useful info if there is an exception.

link(table_1, table_2)
Get the joining clause between two tables, if one exists.

If no link exists, an exception will be raised. Note that this only works for directly links.

get_values(entry_list, col_names=None, keyed=False)
Get the column values from the entries in entry_list

76 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

insert(table, ret_info=None, **input_dict)
Insert a an entry into specified table, and return id.

insert_many(table, input_data_list, ret_info=None, cols=None)
Insert many records into the table given by table_name.

delete_all(entry_list)
Remove the given records from the given table.

get_copy_cursor()

Execute SQL queries in the context of a copy operation.

make_copy_batch_id()

Generate a random batch id for copying into the database.

This allows for easy retrieval of the assigned ids immediately after copying in. At this time, only Reading
and RawStatements use the feature.

copy_report_lazy(tbl_name, data, cols=None, commit=True, constraint=None, return_cols=None,
order_by=None)

Copy lazily, and report what rows were skipped.

copy_detailed_report_lazy(tbl_name, data, inp_cols=None, ret_cols=None, commit=True,
constraint=None, skipped_cols=None, order_by=None)

Copy lazily, returning data from some of the columns such as IDs.

copy_lazy(tbl_name, data, cols=None, commit=True, constraint=None)
Copy lazily, skip any rows that violate constraints.

copy_push(tbl_name, data, cols=None, commit=True, constraint=None)
Copy, pushing any changes to constraint violating rows.

copy_report_push(tbl_name, data, cols=None, commit=True, constraint=None, return_cols=None,
order_by=None)

Report on the rows skipped when pushing and copying.

copy(tbl_name, data, cols=None, commit=True)
Use pg_copy to copy over a large amount of data.

filter_query(tbls, *args)
Query a table and filter results.

count(tbl, *args)
Get a count of the results to a query.

get_primary_key(tbl)
Get an instance for the primary key column of a given table.

select_one(tbls, *args)
Select the first value that matches requirements.

Requirements are given in kwargs from table indicated by tbl_name. See select_all.

Note that if your specification yields multiple results, this method will just return the first result without
exception.

4.2. INDRA Database modules 77

INDRA Database Documentation, Release 1.0.0

select_all(tbls, *args, **kwargs)
Select any and all entries from table given by tbl_name.

The results will be filtered by your keyword arguments. For example if you want to get a text ref with pmid
‘10532205’, you would call:

db.select_all('text_ref', db.TextRef.pmid == '10532205')

Note that double equals are required, not a single equal. Equivalently you could call:

db.select_all(db.TextRef, db.TextRef.pmid == '10532205')

For a more complicated example, suppose you want to get all text refs that have full text from pmc oa, you
could select:

db.select_all(
[db.TextRef, db.TextContent],
db.TextContent.text_ref_id == db.TextRef.id,
db.TextContent.source == 'pmc_oa',
db.TextContent.text_type == 'fulltext'
)

Parameters
• tbls – See above for usage.

• *args – See above for usage.

• **kwargs – yield_per: int or None If the result to your query is expected to be large,
you can choose to only load yield_per items at a time, using the eponymous feature of
sqlalchemy queries. Default is None, meaning all results will be loaded simultaneously.

select_all_batched(batch_size, tbls, *args, skip_idx=None, order_by=None)
Load the results of a query in batches of size batch_size.

Note that this differs from using yeild_per in that the results are not returned as a single iterable, but as an
iterator of iterables.

Note also that the order of results, and thus the contents of offsets, may vary for large queries unless an
explicit order_by clause is added to the query.

select_sample_from_table(number, table, *args, **kwargs)
Select a number of random samples from the given table.

Parameters
• number (int) – The number of samples to return

• table (str, table class, or column attribute of table class) – The table
or table column to be sampled.

• *args – All other arguments are passed to select_all, including any and all filtering clauses.

• **kwargs – All other arguments are passed to select_all, including any and all filtering
clauses.

Return type
A list of sqlalchemy orm objects

78 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

has_entry(tbls, *args)
Check whether an entry/entries matching given specs live in the db.

pg_dump(dump_file, **options)
Use the pg_dump command to dump part of the database onto s3.

The pg_dump tool must be installed, and must be a compatible version with the database(s) being used.

All keyword arguments are converted into flags/arguments of pg_dump. For documentation run pg_dump
–help. This will also confirm you have pg_dump installed.

By default, the “General” and “Connection” options are already set. The most likely specification you will
want to use is –table or –schema, specifying either a particular table or schema to dump.

Parameters
dump_file (S3Path or str) – The location on s3 where the content should be dumped.

pg_restore(dump_file, **options)
Load content into the database from a dump file on s3.

exception indra_db.databases.IndraDbException

indra_db.databases.readers = {'EIDOS': 5, 'ISI': 4, 'MTI': 6, 'REACH': 1, 'SPARSER': 2,
'TRIPS': 3}

A dict mapping each reader a unique integer ID.

These ID’s are used in creating the reading primary ID hashes. Thus, for a new reader to be fully integrated, it
must be added to the above dictionary.

indra_db.databases.reader_versions = {'eidos': ['0.2.3-SNAPSHOT', '1.7.1-SNAPSHOT'],
'isi': ['20180503'], 'mti': ['1.0'], 'reach': ['61059a-biores-e9ee36',
'1.3.3-61059a-biores-', '1.6.1', '1.6.3-e48717'], 'sparser': ['sept14-linux\n',
'sept14-linux', 'June2018-linux', 'October2018-linux', 'February2020-linux',
'April2020-linux'], 'trips': ['STATIC', '2019Nov14', '2021Jan26']}

A dict of list values keyed by reader name, tracking reader versions.

The oldest versions are to the left, and the newest to the right. We keep track of all past versions as it is often not
practical nor necessary to re-run a reading on all content. Even in cases where it is, it is often useful to be able
to compare results.

As with the readers variable above, this is used in the creation of the unique hash for a reading entry. For a
new reader version to work, it must be added to the appropriate list.

class indra_db.databases.PrincipalDatabaseManager(host, label=None, protected=False)
This class represents the methods special to the principal database.

generate_readonly(belief_dict, allow_continue=True)
Manage the materialized views.

Parameters
• belief_dict (dict) – The dictionary, keyed by hash, of belief calculated for Statements.

• allow_continue (bool) – If True (default), continue to build the schema if it already
exists. If False, give up if the schema already exists.

dump_readonly(dump_file=None)
Dump the readonly schema to s3.

create_tables(tbl_list=None)
Create the public tables for INDRA database.

4.2. INDRA Database modules 79

INDRA Database Documentation, Release 1.0.0

drop_tables(tbl_list=None, force=False)
Drop the tables for INDRA database given in tbl_list.

If tbl_list is None, all tables will be dropped. Note that if force is False, a warning prompt will be raised to
asking for confirmation, as this action will remove all data from that table.

class indra_db.databases.ReadonlyDatabaseManager(host, label=None, protected=True)
This class represents the readonly database.

get_config_string()

Print a config entry for this handle.

This is useful after using create_instance.

get_source_names()→ set
Get a list of the source names as they appear in SourceMeta cols.

get_active_tables(schema='readonly')
Get the tables currently active in the database.

Parameters
schema (None or st) – The name of the schema whose tables you wish to see. The default
is readonly.

ensure_indices()

Iterates over all the tables and builds indices if they are missing.

When restoring a readonly dump into an instance, some indices may be missing. This function rebuilds
missing indices while skipping any existing ones.

load_dump(dump_file, force_clear=True)
Load from a dump of the readonly schema on s3.

Belief Calculator (indra_db.belief)

The belief in the knowledge of a Statement is a measure of our confidence that the Statement is an accurate representation
of the text, _NOT_ our confidence in the validity of what was in that text. Given the size of the content in the database,
some special care is needed when calculating this value, which depends heavily on the support relations between pre-
assembled Statements.

This file contains tools to calculate belief scores for the database.

Scores are calculated using INDRA’s belief engine, with MockStatements and MockEvidence derived from shallow
metadata on the database, allowing the entire corpus to be processed locally in RAM, in very little time.

exception indra_db.belief.LoadError

class indra_db.belief.MockEvidence(source_api, **annotations)
A class to imitate real INDRA Evidence for calculating belief.

class indra_db.belief.MockStatement(mk_hash, evidence=None, supports=None, supported_by=None)
A class to imitate real INDRA Statements for calculating belief.

indra_db.belief.load_mock_statements(db, hashes=None, sup_links=None)
Generate a list of mock statements from the pa statement table.

80 Chapter 4. Further INDRA Database documentation

INDRA Database Documentation, Release 1.0.0

indra_db.belief.populate_support(stmts, links)
Populate the supports supported_by lists of statements given links.

Parameters
• stmts (list[MockStatement/Statement]) – A list of objects with supports and sup-

ported_by attributes which are lists or equivalent.

• links (list[tuple]) – A list of pairs of hashes or matches_keys, where the first supports
the second.

4.2. INDRA Database modules 81

INDRA Database Documentation, Release 1.0.0

82 Chapter 4. Further INDRA Database documentation

CHAPTER

FIVE

INDRA DATABASE REST SERVICE

5.1 INDRA Database REST API

The INDRA Database software has been developed to create and maintain a database of text references, content, read-
ing results, and ultimately INDRA Statements extracted from those reading results. The software also manages the
generation and update process of cleaning, deduplicating, and finding relations between the raw Statement extractions,
into what are called pre-assembled Statements. All INDRA Statements can be represented as JSON, which is the format
returned by the API.

This web API provides the code necessary to support a REST service which allows access to the pre-assembled State-
ments in a database. The system is still under heavy development so capabilities are always expanding, but as of this
writing, the API supports:

• ``statements/from_agents` <#from-agents>`_, getting Statements by agents, using various ids or names, by state-
ment type (e.g. Phosphorylation), or

• ``statements/from_hash` <#from-hash>`_ and ``statements/from_hashes` <#from-hashes>`_, getting Statements
by Statement hash, either singly or in batches, and

• ``statements/from_papers` <#from-papers>`_, getting Statements using the paper ids from which they were ex-
tracted, and

• ``curation/submit/<hash>` <#curation>`_ you can also curate Statements, helping us improve the quality and
accuracy of our content.

As mentioned, the service is changing rapidly, and this documentation may at times be out of date. For the latest, check
github or contact us.

You need the following information to access a running web service:

• The address of the web service (below shown with the placeholder api.host)

• An API key which needs to be sent in the header of each request to the service, or any other credentials that are
implemented.

If you want to use our implementation of the web API, you can contact us for the path and an API key.

The code to support the REST service can be found in api.py, implemented using the Flask Python package. The
means of hosting this api are left to the user. We have had success using Zappa and AWS Lambda, and recommend it
for a quick and efficient way to get the API up and running.

83

https://github.com/Miserlou/Zappa

INDRA Database Documentation, Release 1.0.0

5.1.1 The Statement Endpoints

For all queries, an API key is required, which is passed as a parameter api_key to any/all queries. Below is detailed
documentation for the different endpoints of the API that return statements (i.e. those with the root /statements).
All endpoints that return statements have the following options to control the size and order of the response:

• **format**: The endpoint is capable of returning both HTML and JSON content by setting the format parameter
to “html” or “json”, respectively. See the section on output formats below.

• **max_stmts**: Set the maximum number of statements you wish to receive. The REST API maximum is
1000, which cannot be overridden by this argument (to prevent request timeouts).

• **ev_limit**: The default varies, but in general the amount of Evidence returned for each statement is limited.
A single statement can have upwards of 10,000 pieces of evidence, so this allows queries to be run reliably. There
is no limitation on this value, so use with caution. Setting too high a value may cause a request to time out or be
too large to return.

• **best_first**: This is set to “true” by default, so statements with the most evidence are returned first. These
are generally the most reliable, however they are also generally the most canonical. Set this parameter to “false”
to get statements in an arbitrary order. This can also speed up a query. You may however find you get a lot of
low-quality content.

The output formats

The output format is controlled by the **format** option described above, with options to return JSON or HTML.

JSON: The default value, intended for programmatic use, is “json”. The JSON that is returned is of the following form
(with many made-up but reasonable numbers filled in):

{
"statements": { # Dict of statement JSONs keyed by hash
"12345234234": {...}, # Statement JSON 1
"-246809323482": {...}, # Statement JSON 2
...},

"offset": 2000, # offset of SQL query
"evidence_limit": 10, # evidence limit used
"statement_limit": 1000, # REST API Limit
"evidence_totals": { # dict of available evidence for each statement keyed by hash
"12345234234": 7657,
"-246809323482": 870,
...},

"total_evidence": 163708, # The total amount of evidence available
"evidence_returned": 10000 # The total amount of evidence returned

}

where the "statements" element contains a dictionary of INDRA Statement JSONs keyed by a shallow statement
hash (see here for more details on these hashes). You can look at the JSON schema on github for details on the Statement
JSON. To learn more about INDRA Statements, you can read the documentation.

HTML: The other format parameter option, designed for easier manual usage, is “html”. The service will then return
an HTML document that, when opened in a web browser and if logged in, provides a graphical user interface for
viewing and curating statements at the evidence level. The web page also allows you to easily query for more evidence
for a given statement. Documentation for the html output (produced by INDRA’s HTML assembler) can be found here.

84 Chapter 5. INDRA Database REST Service

https://github.com/sorgerlab/indra/blob/master/indra/resources/statements_schema.json
https://indra.readthedocs.io/en/latest/modules/statements.html
https://indra.readthedocs.io/en/latest/modules/assemblers/index.html

INDRA Database Documentation, Release 1.0.0

Get Statements by agents (and type): GET api.host/statements/from_agents

This endpoint allows you to get statements filtering by their agents and the type of Statement. The query parameters
are as follows:

• subject, object: The HGNC gene symbol of the subject or object of the Statement. Note: only one of each of
subject and object will be accepted per query.

– Example 1: if looking for Statements where MAP2K1 is a subject (e.g. “What does MAP2K1 phosphory-
late?”), specify subject=MAP2K1 as a query parameter

– Example 2: if looking for Statements where MAP2K1 is the subject and MAPK1 is the object, add both
subject=MAP2K1 and object=MAPK1 as query parameters.

– Example 3: you can specify the agent id namespace by appending @<namespace> to the agent id in the
parameter, e.g. subject=6871@HGNC.

• agent*: This parameter is used if the specific role of the agent (subject or object) is irrelevant, or the distinction
doesn’t apply to the type of Statement of interest (e.g. Complex, Translocation, ActiveForm). Note: You can
include as many agent* queries as you like, however you will only get Statements that include all agents you
query, in addition to those queried for subject and object. Furthermore, to include multiple agents on our
particular implementation, which uses the AWS API Gateway, you must include a suffix to each agent key, such
as agent0 and agent1, or else all but one agent will be stripped out. Note that you need not use integers, you
can add any suffix you like, e.g. agentOfDestruction=TP53 would be entirely valid.

– Example 1: To obtain Statements that involve SMAD2 in any role, add agent=SMAD2 to the query.

– Example 2: As with subject and object, you can specify the namespace for an agent by appending
@<namespace> to the agent’s id, e.g. agent=ERK@TEXT.

– Example 3: If you wanted to query multiple statements, you could include agent0=MEK@FPLX and
agent1=ERK@FPLX. Note that the value of the integers has no real bearing on the ordering, and only serves
to make the agents uniquely keyed. Thus agent1=MEK@FPLX and agent0=ERK@FPLX will give exactly the
same result.

• type: This parameter can be used to specify what type of Statement of interest (e.g. Phosphorylation, Activation,
Complex).

– Example: To answer the question “Does MAP2K1 phosphorylate MAPK1?” the parameter
type=Phosphorylation can be included in your query. Note that this field is not case sensitive, so
type=phosphorylation would give the same result.

Get a Statement by hash: GET api.host/statements/from_hash/<hash>

INDRA Statement objects have a method, get_hash, which produces hash from the content of the Statement. A
shallow hash only considers the meaning of the statement (agents, type, modifications, etc.), whereas a deeper hash
also considers the list of evidence available for that Statement. The shallow hash is what is used in this application, as
it has the same uniqueness properties used in deduplication. As mentioned above, the Statements are returned keyed
by their hash. In addition, if you construct a Statement in python, you may get its hash and quickly find any evidence
for that Statement in the database.

This endpoint has no extra parameters, but rather takes an extension to the path. So, to look up the hash 123456789,
you would use statements/from_hash/123456789.

Because this only returns one statement, the default evidence limit is extremely generous, set to 10,000. Thus you are
most likely to get all the evidence for a given statement this way. As described above, the evidence limit can also be
raised, at the risk of a timed out request.

5.1. INDRA Database REST API 85

INDRA Database Documentation, Release 1.0.0

Get Statements from many hashes: POST api.host/statements/from_hashes

Like the previous endpoint, this endpoint uses hashes to retrieve Statements, however instead of only being allowed one
at a time, a bach of hashes may be sent as json data. Because data is sent, this is a POST request, even though you are
in practice “getting” information. There are no special parameters for this endpoint. The json data should be formatted
as:

{"hashes": [12345, 246810]}

with up to 1,000 hashes given in the list.

Get Statements from paper ids: POST api.host/statements/from_papers

Using this endpoint, you can pretend you have a fleet of text extraction tools that run in seconds! Specifically, you can
get the INDRA Statements with evidence from a given list of papers by passing one of the ids of those papers. As with
the above method, the fact that data (paper ids) is send requires this to be a POST request. The papers ids should be
formatted as:

{"ids": [{"id": "12345", "type": "pmid"},
{"id": "234525", "type": "tcid"},
{"id": "PMC23423", "type": "pmcid"}]}

a list of dicts, each containing id type and and id value.

5.1.2 Curation

Because the mechanisms represented by our Statements come in large part from automatic extractions, there can often
be errors. For this reason, we always provide the sentences from which a Statement was extracted (if we extracted it,
some of our content comes from other curated databases), as well as provenance to lead back to the content (abstract,
full text, etc.) that was read, which allows you to use your own judgement regarding the validity of a Statement.

If you find something wrong with a Statement, you can use this curation endpoint to record your observation. This will
not necessarily have any immediate effect on the output, however, over time it will help us improve the readers we use,
our methods for extracting Statements from those reader outputs, could help us filter erroneous content, and will help
us improve our pre-assembly algorithms.

Further instruction on curation best practices can be found here.

86 Chapter 5. INDRA Database REST Service

https://indra.readthedocs.io/en/latest/tutorials/html_curation.html#curation-guidelines

INDRA Database Documentation, Release 1.0.0

Curate statements: POST api.host/curation/submit/<hash>

If you wish to curate a Statement, you must first decide whether you are curating the Statement as generally incorrect,
or whether a particular sentence supports a given Statement. This is the “level” of your curation:

• pa: At this level, you are curating the knowledge in a pre-assembled Statement. For example, if a Statement
indicates that “differentiation binds apoptosis”, regardless of whether the reader(s) made a valid extraction, it is
clearly wrong.

• raw: At this level, you are curating a particular raw extraction, in other words stating that an automatic reader
made an error. Even more explicitly, you can judge whether the sentence supports the extracted Statement. For
example the (hypothetical) sentence “KRAS was found to actively inhibit BRAF” does not support the Statement
“KRAS activates BRAF”. As another example (here a grounding error), would be that the sentence “IR causes
cell death”, where IR is Ionizing Radiation does not support the extraction “‘Insulin Receptor’ causes cell death”.

The two different levels also have different hashes. At the pa level, the hashes discussed above are used, as they are
calculated from the knowledge contained in the statement, independent of the evidence. At the raw level, a different hash
must be included: the source_hash, which identifies a specific piece of evidence, without considering the Statement
extracted. Within a Statement JSON, there is a key “evidence”, with a list of Evidence JSON, which includes an entry
for “source_hash”:

{"evidence": [{"source_hash": 98687578576598, ...}, ...], ...}

Once you know the level, and you have the correct hash(es) (the shallow pre-assembly hash and/or the source hash),
you can curate a statement by POSTing a request with JSON data to the endpoint, as shown in the heading. The JSON
data should contain the following fields:

• tag: A very short word or phrase categorizing the error, for example “grounding” for a grounding error.

• text: A brief description of what you think is most wrong.

• curator: Your name, initials, email, or other way to identify yourself. Whichever you choose, please be consis-
tent.

Note that you can also indicate that a Statement is correct. In particular, if you find that a Statement has some evidence
that supports the Statement and some that does not, curating examples of both is valuable. In general, flagging correct
Statements can be just as valuable as flagging incorrect Statements.

5.1.3 Usage examples

The web service accepts standard HTTP requests, and any client that can send such requests can be used to interact with
the service. Here we provide usage examples with the curl command line tool and python of some of the endpoints.
This is by no means a comprehensive list, but rather demonstrates some of the crucial features discussed above.

In the examples, we assume the path to the web API is https://api.host/, and that the API key is 12345.

curl is a command line tool on Linux and Mac, making it a convenient tool for making calls to this web API.

Using curl to query Statements about “MAP2K1 phosphorylates MAPK1”:

curl -X GET "http://api.host/statements/from_agents?subject=MAP2K1&object=MAPK1&
→˓type=phosphorylation&api_key=12345"

{
"statements": {
"-1072112758478440": {

(continues on next page)

5.1. INDRA Database REST API 87

INDRA Database Documentation, Release 1.0.0

(continued from previous page)

"id": "5c3dff5f-6660-4494-96d2-0142076e9b2f",
"enz": {
"name": "MAP2K1",
"db_refs": {
"UP": "Q02750",
"HGNC": "6840"

},
"sbo": "http://identifiers.org/sbo/SBO:0000460"

},
"sbo": "http://identifiers.org/sbo/SBO:0000216",
"evidence": [

{
"source_api": "reach",
"epistemics": {
"section_type": null,
"direct": true

},
"text": "Thus, free non visual arrestins moderately facilitate the␣

→˓phosphorylation of ERK2 by MEK1.",
"pmid": "22174878",
"annotations": {
"agents": {
"raw_text": [
"MEK1",
"ERK2"

]
},
"content_source": "pmc_oa",
"prior_uuids": [
"55afb6fc-5649-4315-94bc-3ce0651fc1d3"

],
"found_by": "Phosphorylation_syntax_1a_noun"

}
}

],
"type": "Phosphorylation",
"sub": {
"name": "MAPK1",
"db_refs": {
"UP": "P28482",
"HGNC": "6871"

},
"sbo": "http://identifiers.org/sbo/SBO:0000015"

}
}

},
"offset": null,
"total_evidence": 106,
"evidence_totals": {
"-1072112758478440": 106

},
"evidence_returned": 1,

(continues on next page)

88 Chapter 5. INDRA Database REST Service

INDRA Database Documentation, Release 1.0.0

(continued from previous page)

"evidence_limit": "1",
"statement_limit": 1000

}

</p> </details>

Python is another convenient way to use this web API, and has the important advantage that Statements returned from
the service can directly be used directly with INDRA tools.

You can use python to get JSON Statements for the same query:

import requests
resp = requests.get('http://api.host/statements/from_agents',

params={'subject': 'MAP2K1',
'object': 'MAPK1',
'type': 'phosphorylation',
'api_key': 12345})

resp_json = resp.json()

which can now be turned into INDRA Statement objects using stmts_from_json:

from indra.statements import stmts_from_json
stmts = stmts_from_json(resp_json['statements'].values())

For those familiar with pre-assembled INDRA Statements, note that the supports and supported_by lists of the
python Statement objects are not populated.

INDRA also supports a client to this API, which is documented in detail elsewhere, however using that client, the above
query is simply:

from indra.sources import indra_db_rest as idbr
processor = idbr.get_statements(subject='MAP2K1', object='MAPK1', stmt_type=
→˓'phosphorylation')
stmts = processor.statements

Where the URL and API key are located n a config file. A key advantage of this client is that queries that return more
than 1000 statement are paged behind the scenes, so that all the statements which match the query are retrieved with a
single command.

By setting the format option to html in the web API address, an HTML document that presents a graphical user
interface when displayed in a web browser will be returned. The example below queries for statements where BRCA1
is subject and BRCA2 is object:

http://api.host/statements/from_agents?subject=BRCA1&object=BRCA2&api_key=12345&
→˓format=html

The interface is restricted to users with login access. If you are not logged in, you will be prompted to so before
you can view the loaded statements. Once logged in, the queried statements will be loaded and you will be able to
curate statements on the level of individual evidences. Links to various source databases (depending on availability)
are available for each piece of evidence to facilitate accurate curation. Find out more about the HTML interface in
the HTML assembler documentation. For instructions on how to use it and more about the login restriction, see the
manual.

Use curl to query for any kind of interaction between SMURF2 and SMAD2, returning at most 10 statements with 3
evidence each:

5.1. INDRA Database REST API 89

https://indra.readthedocs.io/en/latest/modules/sources/indra_db_rest/index.html
https://indra.readthedocs.io/en/latest/modules/assemblers/html_assembler.html
https://indra.readthedocs.io/en/latest/tutorials/html_curation.html

INDRA Database Documentation, Release 1.0.0

curl -X GET "http://api.host/statements/from_agents?agent0=SMURF2&agent1=SMAD2&api_
→˓key=12345&limit=10&ev_limit=3"

As above, in python this could be handled using the requests module, or with the client:

import requests
from indra.statements import stmts_from_json
from indra.sources import indra_db_rest as idbr

With requests
resp = requests.get('http://api.host/statements/from_agents',

params={'agent0': 'SMURF2', 'agent1': 'SMAD',
'api_key': 12345, 'limit': 10,
'ev_limit': 3})

resp_json = resp.json()
stmts = stmts_from_json(resp_json['statements'].values())

With the client
stmts = idbr.get_statements(agents=['SMURF2', 'SMAD'], max_stmts=10,

ev_limit=3, simple_response=True)

Note the use of the @FPLX suffix to denote the namespace used in identifying the agent to query for things that inhibit
MEK, using curl:

curl -X GET "http://api.host/statements/from_agents?object=MEK@FPLX&type=inhibition&api_
→˓key=12345"

Python requests:

resp = requests.get('http://api.host/statements/from_agents',
params={'agent': 'MEK@FPLX', 'type': 'inhibition',

'api_key': 12345})

and INDRA’s client:

stmts = idbr.get_statements(agents=['MEK@FPLX'], stmt_type='inhibition')

Query for a statement with the hash -1072112758478440, retrieving at most 1000 evidence, using curl:

curl -X GET "http://api.host/statements/from_hash/-1072112758478440?api_key=12345&ev_
→˓limit=1000"

or INDRA’s client:

stmts = idbr.get_statements_by_hash([-1072112758478440], ev_limit=1000)

Note that client does not actually use the same endpoint here, but rather uses the /from_hashes endpoint.

Get the statements from a paper with the pmid 22174878, and another paper with the doi 10.1259/0007-1285-34-407-
693, first create the json file, call it papers.json with the following:

{
"ids": [
{"id": "22174878", "type": "pmid"},

(continues on next page)

90 Chapter 5. INDRA Database REST Service

INDRA Database Documentation, Release 1.0.0

(continued from previous page)

{"id": "10.1259/0007-1285-34-407-693", "type": "doi"}
]

}

and post it to the REST API with curl:

curl -X POST "http://api.host/statements/from_papers?api_key=12345" -d @papers.json -H
→˓"Content-Type: application/json"

or just use INDRA’s client:

stmts = idbr.get_statments_for_paper([('pmid', '22174878'),
('doi', '10.1259/0007-1285-34-407-693')])

Curate a Statement at the pre-assembled (pa) level for a Statement with hash -1072112758478440, using curl:

curl -X POST "http://api.host/curation/submit/-1072112758478440?api_key=12345" -d '{"tag
→˓": "correct", "text": "This Statement is OK.", "curator": "Alice"}' -H "Content-Type:␣
→˓application/json"

or INDRA’s client:

idbr.submit_curation(-1072112758478440, 'correct', 'This Statement is OK.', 'Alice')

5.1. INDRA Database REST API 91

INDRA Database Documentation, Release 1.0.0

92 Chapter 5. INDRA Database REST Service

CHAPTER

SIX

INDICES AND TABLES

• genindex

• search

93

INDRA Database Documentation, Release 1.0.0

94 Chapter 6. Indices and tables

PYTHON MODULE INDEX

i
indra_db.belief, 80
indra_db.cli.content, 36
indra_db.cli.dump, 43
indra_db.cli.knowledgebase, 42
indra_db.cli.preassembly, 42
indra_db.cli.reading, 41
indra_db.client.datasets, 20
indra_db.client.principal.content, 10
indra_db.client.principal.curation, 11
indra_db.client.principal.raw_statements, 12
indra_db.client.readonly.query, 13
indra_db.client.statements, 21
indra_db.databases, 75
indra_db.preassembly.preassemble_db, 48
indra_db.preassembly.submitter, 48
indra_db.reading.read_db, 45
indra_db.reading.read_db_aws, 47
indra_db.reading.submitter, 47
indra_db.schemas.indexes, 68
indra_db.schemas.mixins, 68
indra_db.schemas.principal_schema, 49
indra_db.schemas.readonly_schema, 58
indra_db.util.constructors, 69
indra_db.util.content_scripts, 70
indra_db.util.distill_statements, 71
indra_db.util.dump_sif, 72
indra_db.util.helpers, 73
indra_db.util.insert, 74

95

INDRA Database Documentation, Release 1.0.0

96 Python Module Index

INDEX

Symbols
_mesh_nums (indra_db.client.readonly.query.FromMeshIds

attribute), 17
_mesh_type (indra_db.client.readonly.query.FromMeshIds

attribute), 17
--buffer

indra-db-reading-run command line
option, 35

indra-db-reading-run-local command line
option, 35

--continuing
indra-db-content-run command line

option, 25
indra-db-dump-run-all command line

option, 26
indra-db-dump-run-belief command line

option, 27
indra-db-dump-run-end command line

option, 27
indra-db-dump-run-full-pa-json command

line option, 28
indra-db-dump-run-full-pa-stmts command

line option, 28
indra-db-dump-run-mti-mesh-ids command

line option, 29
indra-db-dump-run-principal-statistics

command line option, 29
indra-db-dump-run-readonly command line

option, 30
indra-db-dump-run-res-pos command line

option, 30
indra-db-dump-run-sif command line

option, 31
indra-db-dump-run-source-count command

line option, 31
indra-db-dump-run-start command line

option, 32
--date-stamp

indra-db-dump-run-belief command line
option, 27

indra-db-dump-run-end command line
option, 27

indra-db-dump-run-full-pa-json command
line option, 28

indra-db-dump-run-full-pa-stmts command
line option, 28

indra-db-dump-run-mti-mesh-ids command
line option, 29

indra-db-dump-run-principal-statistics
command line option, 29

indra-db-dump-run-readonly command line
option, 30

indra-db-dump-run-res-pos command line
option, 30

indra-db-dump-run-sif command line
option, 31

indra-db-dump-run-source-count command
line option, 31

--debug
indra-db-content-run command line

option, 25
--delete-existing

indra-db-dump-run-all command line
option, 27

--dump-only
indra-db-dump-run-all command line

option, 26
--force

indra-db-dump-run-belief command line
option, 27

indra-db-dump-run-end command line
option, 27

indra-db-dump-run-full-pa-json command
line option, 28

indra-db-dump-run-full-pa-stmts command
line option, 28

indra-db-dump-run-mti-mesh-ids command
line option, 29

indra-db-dump-run-principal-statistics
command line option, 29

indra-db-dump-run-readonly command line
option, 30

indra-db-dump-run-res-pos command line
option, 30

97

INDRA Database Documentation, Release 1.0.0

indra-db-dump-run-sif command line
option, 31

indra-db-dump-run-source-count command
line option, 31

--from-dump
indra-db-dump-load-readonly command

line option, 26
indra-db-dump-run-belief command line

option, 27
indra-db-dump-run-end command line

option, 27
indra-db-dump-run-full-pa-json command

line option, 28
indra-db-dump-run-full-pa-stmts command

line option, 28
indra-db-dump-run-mti-mesh-ids command

line option, 29
indra-db-dump-run-principal-statistics

command line option, 29
indra-db-dump-run-readonly command line

option, 30
indra-db-dump-run-res-pos command line

option, 30
indra-db-dump-run-sif command line

option, 31
indra-db-dump-run-source-count command

line option, 31
--load-only

indra-db-dump-run-all command line
option, 26

--long
indra-db-content-list command line

option, 24
--no-redirect-to-principal

indra-db-dump-load-readonly command
line option, 26

indra-db-dump-run-all command line
option, 27

--num-procs
indra-db-reading-run-local command line

option, 35
--project-name

indra-db-reading-run command line
option, 35

--with-raw
indra-db-pa-list command line option, 33

-b
indra-db-reading-run command line

option, 35
indra-db-reading-run-local command line

option, 35
-c

indra-db-content-run command line
option, 25

indra-db-dump-run-all command line
option, 26

indra-db-dump-run-belief command line
option, 27

indra-db-dump-run-end command line
option, 27

indra-db-dump-run-full-pa-json command
line option, 28

indra-db-dump-run-full-pa-stmts command
line option, 28

indra-db-dump-run-mti-mesh-ids command
line option, 29

indra-db-dump-run-principal-statistics
command line option, 29

indra-db-dump-run-readonly command line
option, 30

indra-db-dump-run-res-pos command line
option, 30

indra-db-dump-run-sif command line
option, 31

indra-db-dump-run-source-count command
line option, 31

indra-db-dump-run-start command line
option, 32

-d
indra-db-content-run command line

option, 25
indra-db-dump-run-all command line

option, 26
indra-db-dump-run-belief command line

option, 27
indra-db-dump-run-end command line

option, 27
indra-db-dump-run-full-pa-json command

line option, 28
indra-db-dump-run-full-pa-stmts command

line option, 28
indra-db-dump-run-mti-mesh-ids command

line option, 29
indra-db-dump-run-principal-statistics

command line option, 29
indra-db-dump-run-readonly command line

option, 30
indra-db-dump-run-res-pos command line

option, 30
indra-db-dump-run-sif command line

option, 31
indra-db-dump-run-source-count command

line option, 31
-f

indra-db-dump-run-belief command line
option, 27

indra-db-dump-run-end command line
option, 27

98 Index

INDRA Database Documentation, Release 1.0.0

indra-db-dump-run-full-pa-json command
line option, 28

indra-db-dump-run-full-pa-stmts command
line option, 28

indra-db-dump-run-mti-mesh-ids command
line option, 29

indra-db-dump-run-principal-statistics
command line option, 29

indra-db-dump-run-readonly command line
option, 30

indra-db-dump-run-res-pos command line
option, 30

indra-db-dump-run-sif command line
option, 31

indra-db-dump-run-source-count command
line option, 31

-l
indra-db-content-list command line

option, 24
indra-db-dump-run-all command line

option, 26
-n

indra-db-reading-run-local command line
option, 35

-r
indra-db-pa-list command line option, 33

A
add_to_review() (in-

dra_db.cli.content.ContentManager method),
36

agent_interactions() (in-
dra_db.schemas.readonly_schema.ReadonlySchema
method), 67

B
Belief (class in indra_db.cli.dump), 43
belief() (indra_db.schemas.readonly_schema.ReadonlySchema

method), 59
BelLcManager (class in indra_db.cli.knowledgebase), 42
BiogridManager (class in indra_db.cli.knowledgebase),

42
build_hash_query() (in-

dra_db.client.readonly.query.Query method),
15

BulkAwsReadingManager (class in in-
dra_db.cli.reading), 41

BulkLocalReadingManager (class in in-
dra_db.cli.reading), 41

BulkReadingManager (class in indra_db.cli.reading),
41

C
CBNManager (class in indra_db.cli.knowledgebase), 42

commit() (indra_db.databases.DatabaseManager
method), 76

construct_readers() (in module in-
dra_db.reading.read_db), 46

ContentManager (class in indra_db.cli.content), 36
copy() (indra_db.client.readonly.query.Query method),

13
copy() (indra_db.databases.DatabaseManager method),

77
copy_detailed_report_lazy() (in-

dra_db.databases.DatabaseManager method),
77

copy_lazy() (indra_db.databases.DatabaseManager
method), 77

copy_push() (indra_db.databases.DatabaseManager
method), 77

copy_report_lazy() (in-
dra_db.databases.DatabaseManager method),
77

copy_report_push() (in-
dra_db.databases.DatabaseManager method),
77

count() (indra_db.databases.DatabaseManager
method), 77

create_corpus() (in-
dra_db.preassembly.preassemble_db.DbPreassembler
method), 48

create_instance() (in-
dra_db.databases.DatabaseManager class
method), 75

create_schema() (in-
dra_db.databases.DatabaseManager method),
76

create_tables() (in-
dra_db.databases.PrincipalDatabaseManager
method), 79

CTDManager (class in indra_db.cli.knowledgebase), 42
curations() (indra_db.schemas.principal_schema.PrincipalSchema

method), 57

D
DatabaseManager (class in indra_db.databases), 75
DatabaseMeshRefData (class in in-

dra_db.reading.read_db), 45
DatabaseReader (class in indra_db.reading.read_db),

46
DatabaseResultData (class in in-

dra_db.reading.read_db), 45
DatabaseStatementData (class in in-

dra_db.reading.read_db), 45
db_info() (indra_db.schemas.principal_schema.PrincipalSchema

method), 53
DbIndexError, 68

Index 99

INDRA Database Documentation, Release 1.0.0

DbPreassembler (class in in-
dra_db.preassembly.preassemble_db), 48

delete_all() (indra_db.databases.DatabaseManager
method), 77

delete_raw_statements_by_id() (in module in-
dra_db.util.distill_statements), 71

discarded_statements() (in-
dra_db.schemas.principal_schema.PrincipalSchema
method), 57

distill_stmts() (in module in-
dra_db.util.distill_statements), 71

doi_in() (indra_db.schemas.mixins.IndraDBRefTable
class method), 68

doi_notin() (indra_db.schemas.mixins.IndraDBRefTable
class method), 68

download_archive() (in-
dra_db.cli.content.PmcManager method),
38

drop_schema() (indra_db.databases.DatabaseManager
method), 76

drop_tables() (indra_db.databases.PrincipalDatabaseManager
method), 79

DrugBankManager (class in in-
dra_db.cli.knowledgebase), 43

dump() (in module indra_db.cli.dump), 44
dump_annotations() (indra_db.cli.content.Pubmed

method), 37
dump_readings_to_db() (in-

dra_db.reading.read_db.DatabaseReader
method), 46

dump_readings_to_pickle() (in-
dra_db.reading.read_db.DatabaseReader
method), 46

dump_readonly() (in-
dra_db.databases.PrincipalDatabaseManager
method), 79

dump_results_to_db() (in-
dra_db.reading.read_db.DatabaseReader
method), 46

dump_results_to_pickle() (in-
dra_db.reading.read_db.DatabaseReader
method), 46

dump_sif() (in module indra_db.util.dump_sif), 72
DumperChild (in module indra_db.cli.dump), 44
DumpOrderError, 43

E
Elsevier (class in indra_db.cli.content), 40
End (class in indra_db.cli.dump), 44
enrich_textrefs() (indra_db.cli.content.Manuscripts

method), 40
ensure_indices() (in-

dra_db.databases.ReadonlyDatabaseManager
method), 80

ev_filter() (indra_db.client.readonly.query.FromMeshIds
method), 17

ev_filter() (indra_db.client.readonly.query.Intersection
method), 15

ev_filter() (indra_db.client.readonly.query.Union
method), 15

evidence_counts() (in-
dra_db.schemas.readonly_schema.ReadonlySchema
method), 59

EvidenceFilter (class in in-
dra_db.client.readonly.query), 19

export_relation_dict_to_tsv() (in module in-
dra_db.client.datasets), 20

extract_agent_data() (in module in-
dra_db.util.insert), 74

F
fast_raw_pa_link() (in-

dra_db.schemas.readonly_schema.ReadonlySchema
method), 60

filter_query() (indra_db.databases.DatabaseManager
method), 77

filter_text_content() (in-
dra_db.cli.content.PmcManager method),
37

filter_text_refs() (in-
dra_db.cli.content.ContentManager method),
36

find_all_missing_pmcids() (in-
dra_db.cli.content.PmcOA method), 39

fix_doi() (indra_db.cli.content.Pubmed static method),
36

from_date() (indra_db.cli.dump.Start class method), 43
from_simple_json() (in-

dra_db.client.readonly.query.Query class
method), 15

FromAgentJson (class in in-
dra_db.client.readonly.query), 19

FromMeshIds (class in indra_db.client.readonly.query),
16

FromPapers (class in indra_db.client.readonly.query),
19

FullPaJson (class in indra_db.cli.dump), 44
FullPaStmts (class in indra_db.cli.dump), 44

G
generate_reading_id() (in module in-

dra_db.reading.read_db), 45
generate_readonly() (in-

dra_db.databases.PrincipalDatabaseManager
method), 79

get_active_tables() (in-
dra_db.databases.DatabaseManager method),
76

100 Index

INDRA Database Documentation, Release 1.0.0

get_active_tables() (in-
dra_db.databases.ReadonlyDatabaseManager
method), 80

get_agents() (indra_db.client.readonly.query.Query
method), 14

get_archives_after_date() (in-
dra_db.cli.content.PmcOA method), 39

get_cols() (indra_db.reading.read_db.DatabaseMeshRefData
static method), 45

get_cols() (indra_db.reading.read_db.DatabaseStatementData
static method), 45

get_column_names() (in-
dra_db.databases.DatabaseManager method),
76

get_column_objects() (in-
dra_db.databases.DatabaseManager method),
76

get_config_string() (in-
dra_db.databases.DatabaseManager method),
76

get_config_string() (in-
dra_db.databases.ReadonlyDatabaseManager
method), 80

get_content_by_refs() (in module in-
dra_db.client.principal.content), 10

get_copy_cursor() (in-
dra_db.databases.DatabaseManager method),
77

get_csv_files() (indra_db.cli.content.PmcManager
method), 39

get_curations() (in module in-
dra_db.client.principal.curation), 11

get_data_from_xml_str() (in-
dra_db.cli.content.PmcManager method),
37

get_db() (in module indra_db.util.constructors), 69
get_env_string() (in-

dra_db.databases.DatabaseManager method),
76

get_evidence() (in module in-
dra_db.client.statements), 21

get_file_data() (indra_db.cli.content.Manuscripts
method), 40

get_file_data() (indra_db.cli.content.PmcOA
method), 39

get_filtered_db_stmts() (in module in-
dra_db.util.distill_statements), 71

get_filtered_rdg_stmts() (in module in-
dra_db.util.distill_statements), 71

get_grounding_curations() (in module in-
dra_db.client.principal.curation), 11

get_hashes() (indra_db.client.readonly.query.Query
method), 13

get_interactions() (in-

dra_db.client.readonly.query.Query method),
14

get_latest_dump_s3_path() (in module in-
dra_db.cli.dump), 43

get_latest_update() (in-
dra_db.cli.content.ContentManager class
method), 36

get_latest_updates() (in-
dra_db.cli.reading.ReadingManager static
method), 41

get_license() (indra_db.cli.content.Manuscripts
method), 40

get_license() (indra_db.cli.content.PmcManager
method), 38

get_license() (indra_db.cli.content.PmcOA method),
39

get_missing_pmids() (in-
dra_db.cli.content.PmcManager static
method), 37

get_pmcid_file_dict() (in-
dra_db.cli.content.PmcManager method),
39

get_primary_db() (in module in-
dra_db.util.constructors), 69

get_primary_key() (in-
dra_db.databases.DatabaseManager method),
77

get_raw_stmt_jsons() (in module in-
dra_db.client.principal.raw_statements),
12

get_raw_stmt_jsons_from_agents() (in module in-
dra_db.client.principal.raw_statements), 12

get_raw_stmt_jsons_from_papers() (in module in-
dra_db.client.principal.raw_statements), 12

get_raw_stmts_frm_db_list() (in module in-
dra_db.util.helpers), 73

get_reader_output() (in module in-
dra_db.client.principal.content), 10

get_reading_stmt_dict() (in module in-
dra_db.util.distill_statements), 71

get_readings() (indra_db.reading.read_db.DatabaseReader
method), 46

get_ref_dict() (indra_db.schemas.mixins.IndraDBRefTable
method), 68

get_relation_dict() (in module in-
dra_db.client.datasets), 20

get_relations() (in-
dra_db.client.readonly.query.Query method),
14

get_results() (indra_db.reading.read_db.DatabaseReader
method), 46

get_ro() (in module indra_db.util.constructors), 69
get_ro_host() (in module indra_db.util.constructors),

69

Index 101

INDRA Database Documentation, Release 1.0.0

get_schemas() (indra_db.databases.DatabaseManager
method), 76

get_source_counts() (in module in-
dra_db.util.dump_sif), 72

get_source_names() (in-
dra_db.databases.ReadonlyDatabaseManager
method), 80

get_statement_essentials() (in module in-
dra_db.client.datasets), 20

get_statement_object() (in module in-
dra_db.util.helpers), 73

get_statements() (in module in-
dra_db.client.statements), 21

get_statements() (in-
dra_db.client.readonly.query.Query method),
13

get_statements_by_gene_role_type() (in module
indra_db.client.statements), 22

get_statements_by_paper() (in module in-
dra_db.client.statements), 23

get_statements_from_hashes() (in module in-
dra_db.client.statements), 23

get_stmts_with_agent_text_like() (in module in-
dra_db.util.content_scripts), 70

get_support() (in module indra_db.client.statements),
24

get_tables() (indra_db.databases.DatabaseManager
method), 76

get_tarname_from_filename() (in-
dra_db.cli.content.Manuscripts method),
40

get_text_content_from_stmt_ids() (in module in-
dra_db.util.content_scripts), 70

get_values() (indra_db.databases.DatabaseManager
method), 76

grab_session() (indra_db.databases.DatabaseManager
method), 76

H
has_entry() (indra_db.databases.DatabaseManager

method), 78
has_ref() (indra_db.schemas.mixins.IndraDBRefTable

class method), 68
HasAgent (class in indra_db.client.readonly.query), 16
HasDatabases (class in indra_db.client.readonly.query),

17
HasEvidenceBound (class in in-

dra_db.client.readonly.query), 19
hash_pmid_counts() (in-

dra_db.schemas.readonly_schema.ReadonlySchema
method), 62

HasHash (class in indra_db.client.readonly.query), 17
HasNumAgents (class in indra_db.client.readonly.query),

18

HasNumEvidence (class in in-
dra_db.client.readonly.query), 18

HasOnlySource (class in in-
dra_db.client.readonly.query), 17

HasReadings (class in indra_db.client.readonly.query),
17

HasSources (class in indra_db.client.readonly.query),
17

HasType (class in indra_db.client.readonly.query), 18
HPRDManager (class in indra_db.cli.knowledgebase), 42

I
indra_db.belief

module, 80
indra_db.cli.content

module, 36
indra_db.cli.dump

module, 43
indra_db.cli.knowledgebase

module, 42
indra_db.cli.preassembly

module, 42
indra_db.cli.reading

module, 41
indra_db.client.datasets

module, 20
indra_db.client.principal.content

module, 10
indra_db.client.principal.curation

module, 11
indra_db.client.principal.raw_statements

module, 12
indra_db.client.readonly.query

module, 13
indra_db.client.statements

module, 21
indra_db.databases

module, 75
indra_db.preassembly.preassemble_db

module, 48
indra_db.preassembly.submitter

module, 48
indra_db.reading.read_db

module, 45
indra_db.reading.read_db_aws

module, 47
indra_db.reading.submitter

module, 47
indra_db.schemas.indexes

module, 68
indra_db.schemas.mixins

module, 68
indra_db.schemas.principal_schema

module, 49

102 Index

INDRA Database Documentation, Release 1.0.0

indra_db.schemas.readonly_schema
module, 58

indra_db.util.constructors
module, 69

indra_db.util.content_scripts
module, 70

indra_db.util.distill_statements
module, 71

indra_db.util.dump_sif
module, 72

indra_db.util.helpers
module, 73

indra_db.util.insert
module, 74

indra-db-content-list command line option
--long, 24
-l, 24

indra-db-content-run command line option
--continuing, 25
--debug, 25
-c, 25
-d, 25
SOURCES, 25
TASK, 25

indra-db-dump-list command line option
STATE, 26

indra-db-dump-load-readonly command line
option

--from-dump, 26
--no-redirect-to-principal, 26

indra-db-dump-run-all command line option
--continuing, 26
--delete-existing, 27
--dump-only, 26
--load-only, 26
--no-redirect-to-principal, 27
-c, 26
-d, 26
-l, 26

indra-db-dump-run-belief command line
option

--continuing, 27
--date-stamp, 27
--force, 27
--from-dump, 27
-c, 27
-d, 27
-f, 27

indra-db-dump-run-end command line option
--continuing, 27
--date-stamp, 27
--force, 27
--from-dump, 27
-c, 27

-d, 27
-f, 27

indra-db-dump-run-full-pa-json command line
option

--continuing, 28
--date-stamp, 28
--force, 28
--from-dump, 28
-c, 28
-d, 28
-f, 28

indra-db-dump-run-full-pa-stmts command
line option

--continuing, 28
--date-stamp, 28
--force, 28
--from-dump, 28
-c, 28
-d, 28
-f, 28

indra-db-dump-run-mti-mesh-ids command line
option

--continuing, 29
--date-stamp, 29
--force, 29
--from-dump, 29
-c, 29
-d, 29
-f, 29

indra-db-dump-run-principal-statistics
command line option

--continuing, 29
--date-stamp, 29
--force, 29
--from-dump, 29
-c, 29
-d, 29
-f, 29

indra-db-dump-run-readonly command line
option

--continuing, 30
--date-stamp, 30
--force, 30
--from-dump, 30
-c, 30
-d, 30
-f, 30

indra-db-dump-run-res-pos command line
option

--continuing, 30
--date-stamp, 30
--force, 30
--from-dump, 30
-c, 30

Index 103

INDRA Database Documentation, Release 1.0.0

-d, 30
-f, 30

indra-db-dump-run-sif command line option
--continuing, 31
--date-stamp, 31
--force, 31
--from-dump, 31
-c, 31
-d, 31
-f, 31

indra-db-dump-run-source-count command line
option

--continuing, 31
--date-stamp, 31
--force, 31
--from-dump, 31
-c, 31
-d, 31
-f, 31

indra-db-dump-run-start command line option
--continuing, 32
-c, 32

indra-db-kb-run command line option
SOURCES, 32
TASK, 32

indra-db-pa-list command line option
--with-raw, 33
-r, 33

indra-db-pa-run command line option
PROJECT_NAME, 33
TASK, 33

indra-db-pipeline-stats command line option
TASK, 34

indra-db-reading-run command line option
--buffer, 35
--project-name, 35
-b, 35
TASK, 35

indra-db-reading-run-local command line
option

--buffer, 35
--num-procs, 35
-b, 35
-n, 35
TASK, 35

IndraDbException, 79
IndraDBPreassemblyError, 48
IndraDBRefTable (class in indra_db.schemas.mixins),

68
IndraDBTableMetaClass (class in in-

dra_db.schemas.mixins), 68
insert() (indra_db.databases.DatabaseManager

method), 76

insert_db_stmts() (in module indra_db.util.insert),
74

insert_many() (indra_db.databases.DatabaseManager
method), 77

insert_pa_stmts() (in module indra_db.util.insert),
74

insert_raw_agents() (in module indra_db.util.insert),
74

Intersection (class in indra_db.client.readonly.query),
15

IntrusiveQuery (class in in-
dra_db.client.readonly.query), 18

invert() (indra_db.client.readonly.query.Query
method), 13

is_inverse_of() (in-
dra_db.client.readonly.query.Intersection
method), 15

is_inverse_of() (in-
dra_db.client.readonly.query.Query method),
15

is_inverse_of() (in-
dra_db.client.readonly.query.SourceIntersection
method), 18

is_inverse_of() (in-
dra_db.client.readonly.query.Union method),
16

is_trips_datestring() (in module in-
dra_db.reading.read_db_aws), 47

item_type (indra_db.client.readonly.query.HasNumAgents
attribute), 18

item_type (indra_db.client.readonly.query.HasNumEvidence
attribute), 19

item_type (indra_db.client.readonly.query.HasType at-
tribute), 18

iter_contents() (indra_db.cli.content.PmcManager
method), 38

iter_contents() (indra_db.cli.content.Pubmed
method), 37

iter_xmls() (indra_db.cli.content.PmcManager
method), 38

L
link() (indra_db.databases.DatabaseManager method),

76
list_component_queries() (in-

dra_db.client.readonly.query.Query method),
15

list_dumps() (in module indra_db.cli.dump), 43
list_last_updates() (in module in-

dra_db.cli.preassembly), 42
list_latest_raw_stmts() (in module in-

dra_db.cli.preassembly), 42
load() (indra_db.cli.dump.Start method), 43

104 Index

INDRA Database Documentation, Release 1.0.0

load_annotations() (indra_db.cli.content.Pubmed
method), 37

load_db_content() (in module in-
dra_db.util.dump_sif), 72

load_dump() (indra_db.databases.ReadonlyDatabaseManager
method), 80

load_files() (indra_db.cli.content.Pubmed method),
37

load_mock_statements() (in module indra_db.belief),
80

load_res_pos() (in module indra_db.util.dump_sif),
73

load_text_refs() (indra_db.cli.content.Pubmed
method), 37

LoadError, 80

M
make_copy_batch_id() (in-

dra_db.databases.DatabaseManager method),
77

make_dataframe() (in module indra_db.util.dump_sif),
73

make_graph() (in module in-
dra_db.preassembly.preassemble_db), 48

make_results() (indra_db.reading.read_db.DatabaseReader
method), 46

make_text_ref_str() (in-
dra_db.cli.content.ContentManager method),
36

make_tuple() (indra_db.reading.read_db.DatabaseMeshRefData
method), 46

make_tuple() (indra_db.reading.read_db.DatabaseStatementData
method), 45

Manuscripts (class in indra_db.cli.content), 40
MergeQuery (class in indra_db.client.readonly.query),

16
mesh_concept_meta() (in-

dra_db.schemas.readonly_schema.ReadonlySchema
method), 67

mesh_concept_ref_counts() (in-
dra_db.schemas.readonly_schema.ReadonlySchema
method), 62

mesh_concepts() (in-
dra_db.schemas.readonly_schema.ReadonlySchema
method), 62

mesh_ids (indra_db.client.readonly.query.FromMeshIds
attribute), 17

mesh_ref_annotations() (in-
dra_db.schemas.principal_schema.PrincipalSchema
method), 51

mesh_term_meta() (in-
dra_db.schemas.readonly_schema.ReadonlySchema
method), 66

mesh_term_ref_counts() (in-
dra_db.schemas.readonly_schema.ReadonlySchema
method), 62

mesh_terms() (indra_db.schemas.readonly_schema.ReadonlySchema
method), 62

MockEvidence (class in indra_db.belief), 80
MockStatement (class in indra_db.belief), 80
module

indra_db.belief, 80
indra_db.cli.content, 36
indra_db.cli.dump, 43
indra_db.cli.knowledgebase, 42
indra_db.cli.preassembly, 42
indra_db.cli.reading, 41
indra_db.client.datasets, 20
indra_db.client.principal.content, 10
indra_db.client.principal.curation, 11
indra_db.client.principal.raw_statements,

12
indra_db.client.readonly.query, 13
indra_db.client.statements, 21
indra_db.databases, 75
indra_db.preassembly.preassemble_db, 48
indra_db.preassembly.submitter, 48
indra_db.reading.read_db, 45
indra_db.reading.read_db_aws, 47
indra_db.reading.submitter, 47
indra_db.schemas.indexes, 68
indra_db.schemas.mixins, 68
indra_db.schemas.principal_schema, 49
indra_db.schemas.readonly_schema, 58
indra_db.util.constructors, 69
indra_db.util.content_scripts, 70
indra_db.util.distill_statements, 71
indra_db.util.dump_sif, 72
indra_db.util.helpers, 73
indra_db.util.insert, 74

mti_ref_annotaions_test() (in-
dra_db.schemas.principal_schema.PrincipalSchema
method), 51

N
name_meta() (indra_db.schemas.readonly_schema.ReadonlySchema

method), 65
not_has_ref() (indra_db.schemas.mixins.IndraDBRefTable

class method), 68

O
other_meta() (indra_db.schemas.readonly_schema.ReadonlySchema

method), 65

P
pa_activity() (indra_db.schemas.principal_schema.PrincipalSchema

method), 56

Index 105

INDRA Database Documentation, Release 1.0.0

pa_agent_counts() (in-
dra_db.schemas.readonly_schema.ReadonlySchema
method), 61

pa_agents() (indra_db.schemas.principal_schema.PrincipalSchema
method), 56

pa_meta() (indra_db.schemas.readonly_schema.ReadonlySchema
method), 63

pa_mods() (indra_db.schemas.principal_schema.PrincipalSchema
method), 56

pa_muts() (indra_db.schemas.principal_schema.PrincipalSchema
method), 56

pa_ref_link() (indra_db.schemas.readonly_schema.ReadonlySchema
method), 61

pa_statements() (in-
dra_db.schemas.principal_schema.PrincipalSchema
method), 55

pa_stmt_src() (indra_db.schemas.readonly_schema.ReadonlySchema
method), 61

pa_support_links() (in-
dra_db.schemas.principal_schema.PrincipalSchema
method), 56

PathwayCommonsManager (class in in-
dra_db.cli.knowledgebase), 42

pg_dump() (indra_db.databases.DatabaseManager
method), 79

pg_restore() (indra_db.databases.DatabaseManager
method), 79

PhosphoElmManager (class in in-
dra_db.cli.knowledgebase), 42

PhosphositeManager (class in in-
dra_db.cli.knowledgebase), 42

pmcid_in() (indra_db.schemas.mixins.IndraDBRefTable
class method), 68

pmcid_notin() (indra_db.schemas.mixins.IndraDBRefTable
class method), 68

PmcManager (class in indra_db.cli.content), 37
PmcOA (class in indra_db.cli.content), 39
pmid_in() (indra_db.schemas.mixins.IndraDBRefTable

class method), 68
pmid_notin() (indra_db.schemas.mixins.IndraDBRefTable

class method), 68
populate() (indra_db.cli.content.ContentManager

method), 36
populate() (indra_db.cli.content.Elsevier method), 40
populate() (indra_db.cli.content.PmcManager

method), 39
populate() (indra_db.cli.content.Pubmed method), 37
populate_support() (in module indra_db.belief), 80
preassembly_updates() (in-

dra_db.schemas.principal_schema.PrincipalSchema
method), 57

PrincipalDatabaseManager (class in in-
dra_db.databases), 79

PrincipalSchema (class in in-

dra_db.schemas.principal_schema), 49
PrincipalStats (class in indra_db.cli.dump), 43
process_content() (in module in-

dra_db.reading.read_db), 46
PROJECT_NAME

indra-db-pa-run command line option, 33
Pubmed (class in indra_db.cli.content), 36

Q
Query (class in indra_db.client.readonly.query), 13

R
raw_activity() (indra_db.schemas.principal_schema.PrincipalSchema

method), 55
raw_agents() (indra_db.schemas.principal_schema.PrincipalSchema

method), 55
raw_mods() (indra_db.schemas.principal_schema.PrincipalSchema

method), 55
raw_muts() (indra_db.schemas.principal_schema.PrincipalSchema

method), 55
raw_statements() (in-

dra_db.schemas.principal_schema.PrincipalSchema
method), 54

raw_stmt_mesh_concepts() (in-
dra_db.schemas.readonly_schema.ReadonlySchema
method), 63

raw_stmt_mesh_terms() (in-
dra_db.schemas.readonly_schema.ReadonlySchema
method), 63

raw_stmt_src() (indra_db.schemas.readonly_schema.ReadonlySchema
method), 61

raw_unique_links() (in-
dra_db.schemas.principal_schema.PrincipalSchema
method), 55

read() (in module indra_db.reading.read_db), 47
read_all() (indra_db.cli.reading.BulkReadingManager

method), 41
read_all() (indra_db.cli.reading.ReadingManager

method), 41
read_new() (indra_db.cli.reading.BulkReadingManager

method), 41
read_new() (indra_db.cli.reading.ReadingManager

method), 41
ReadDBError, 45
reader_versions (in module indra_db.databases), 79
readers (in module indra_db.databases), 79
reading() (indra_db.schemas.principal_schema.PrincipalSchema

method), 52
reading_ref_link() (in-

dra_db.schemas.readonly_schema.ReadonlySchema
method), 59

reading_updates() (in-
dra_db.schemas.principal_schema.PrincipalSchema
method), 57

106 Index

INDRA Database Documentation, Release 1.0.0

ReadingManager (class in indra_db.cli.reading), 41
ReadingUpdateError, 41
Readonly (class in indra_db.cli.dump), 44
ReadonlyDatabaseManager (class in in-

dra_db.databases), 80
ReadonlySchema (class in in-

dra_db.schemas.readonly_schema), 58
regularize_agent_id() (in module in-

dra_db.util.insert), 75
rejected_statements() (in-

dra_db.schemas.principal_schema.PrincipalSchema
method), 57

ResiduePosition (class in indra_db.cli.dump), 44
RlimspManager (class in indra_db.cli.knowledgebase),

42
run_preassembly() (in module in-

dra_db.cli.preassembly), 42
run_reading() (in module indra_db.reading.read_db),

47

S
Schema (class in indra_db.schemas.mixins), 68
select_all() (indra_db.databases.DatabaseManager

method), 77
select_all_batched() (in-

dra_db.databases.DatabaseManager method),
78

select_one() (indra_db.databases.DatabaseManager
method), 77

select_sample_from_table() (in-
dra_db.databases.DatabaseManager method),
78

set_print_only() (in-
dra_db.client.readonly.query.Query method),
13

shash() (in module in-
dra_db.preassembly.preassemble_db), 48

show_tables() (indra_db.databases.DatabaseManager
method), 76

Sif (class in indra_db.cli.dump), 44
SignorManager (class in indra_db.cli.knowledgebase),

42
source_file() (indra_db.schemas.principal_schema.PrincipalSchema

method), 57
source_meta() (indra_db.schemas.readonly_schema.ReadonlySchema

method), 64
SourceCount (class in indra_db.cli.dump), 44
SourceIntersection (class in in-

dra_db.client.readonly.query), 18
SourceQuery (class in indra_db.client.readonly.query),

17
SOURCES

indra-db-content-run command line
option, 25

indra-db-kb-run command line option, 32
Start (class in indra_db.cli.dump), 43
STATE

indra-db-dump-list command line option,
26

StatementHashMeshId (class in indra_db.cli.dump), 44
submit_curation() (in module in-

dra_db.client.principal.curation), 11
supplement_corpus() (in-

dra_db.preassembly.preassemble_db.DbPreassembler
method), 48

T
TASK

indra-db-content-run command line
option, 25

indra-db-kb-run command line option, 32
indra-db-pa-run command line option, 33
indra-db-pipeline-stats command line

option, 34
indra-db-reading-run command line

option, 35
indra-db-reading-run-local command line

option, 35
TasManager (class in indra_db.cli.knowledgebase), 42
text_content() (indra_db.schemas.principal_schema.PrincipalSchema

method), 52
text_meta() (indra_db.schemas.readonly_schema.ReadonlySchema

method), 64
text_ref() (indra_db.schemas.principal_schema.PrincipalSchema

method), 50
to_json() (indra_db.client.readonly.query.Query

method), 15
TrrustManager (class in indra_db.cli.knowledgebase),

42

U
Union (class in indra_db.client.readonly.query), 15
update() (indra_db.cli.content.ContentManager

method), 36
update() (indra_db.cli.content.Elsevier method), 40
update() (indra_db.cli.content.Manuscripts method), 40
update() (indra_db.cli.content.PmcManager method),

37
update() (indra_db.cli.content.PmcOA method), 39
update() (indra_db.cli.content.Pubmed method), 37
updates() (indra_db.schemas.principal_schema.PrincipalSchema

method), 57
upload_all_missing_pmcids() (in-

dra_db.cli.content.PmcOA method), 39
upload_archives() (in-

dra_db.cli.content.PmcManager method),
38

Index 107

INDRA Database Documentation, Release 1.0.0

upload_batch() (indra_db.cli.content.PmcManager
method), 37

upload_text_content() (in-
dra_db.cli.content.ContentManager method),
36

UploadError, 36
UserQuit, 48

V
VirHostNetManager (class in in-

dra_db.cli.knowledgebase), 42

X
xdd_updates() (indra_db.schemas.principal_schema.PrincipalSchema

method), 57

108 Index

	Knowledge sources
	Daily Readers
	Other Readers
	Other Databases

	Knowledge Assembly
	Access
	Further INDRA Database documentation
	License and funding
	INDRA Database modules
	The Client
	The Principal Database Client
	Access Readings and Text Content (indra_db.client.principal.content)
	Submit and Retrieve Curations (indra_db.client.principal.curation)
	Get Raw Statements (indra_db.client.principal.raw_statements)

	The Readonly Client
	Construct composable queries (indra_db.client.readonly.query)

	Miscellaneous Client APIs (Mostly Deprecated)
	Get Datasets (indra_db.client.datasets)
	Get Statements (indra_db.client.statements)

	Pipeline Management CLI
	indra-db
	content
	list
	run

	dump
	hierarchy
	list
	load-readonly
	print-database-stats
	run
	all
	belief
	end
	full-pa-json
	full-pa-stmts
	mti-mesh-ids
	principal-statistics
	readonly
	res-pos
	sif
	source-count
	start

	kb
	list
	run

	pa
	list
	run

	pipeline-stats
	reading
	list
	run
	run-local

	xdd
	run

	Pipeline CLI Implementations
	Content (indra_db.cli.content)
	Reading (indra_db.cli.reading)
	PreAssembly (indra_db.cli.preassembly)
	Knowledge Bases (indra_db.cli.knowledgebase)
	Static Dumps (indra_db.cli.dump)

	Database Integrated Reading Tools
	The Database Readers (indra_db.reading.read_db)
	The Database Script for Running on AWS (indra_db.reading.read_db_aws)
	A Class to Manage and Monitor AWS Batch Jobs (indra_db.reading.submitter)

	Database Integrated Preassembly Tools
	Database Preassembly (indra_db.preassembly.preassemble_db)
	A Class to Manage and Monitor AWS Batch Jobs (indra_db.preassembly.submitter)

	Database Schemas
	Principal Database Schema (indra_db.schemas.principal_schema)
	The Principal Schema

	Readonly Database Schema (indra_db.schemas.readonly_schema)
	Class Mix-ins (indra_db.schemas.mixins)
	Indexes (indra_db.schemas.indexes)

	Utilities
	Database Session Constructors (indra_db.util.constructors)
	Scripts to Get Content (indra_db.util.content_scripts)
	Distilling Raw Statements (indra_db.util.distill_statements)
	Script to Create a SIF Dump (indra_db.util.dump_sif)
	General Helper Functions (indra_db.util.helpers)
	Routines for Inserting Statements and Content (indra_db.util.insert)

	Some Miscellaneous Modules
	Low Level Database Interface (indra_db.databases)
	Belief Calculator (indra_db.belief)

	INDRA Database REST Service
	INDRA Database REST API
	The Statement Endpoints
	The output formats
	Get Statements by agents (and type): GET api.host/statements/from_agents
	Get a Statement by hash: GET api.host/statements/from_hash/<hash>
	Get Statements from many hashes: POST api.host/statements/from_hashes
	Get Statements from paper ids: POST api.host/statements/from_papers

	Curation
	Curate statements: POST api.host/curation/submit/<hash>

	Usage examples

	Indices and tables
	Python Module Index
	Index

